Semantically Enriched Multi-Modal Routing

We present an innovative extension to routing: intention-oriented routing which is a direct result of combining classical routing-services with Semantic Web technologies. Thereby, the intention of a user can be easily incorporated into route planning. We highlight two use cases where this hybridization is of great significance: neighborhood routing, where a neighborhood can be explored (e.g. searching for events around your place) and via routing, where errands should be run along a route (e.g. buying the ingredients for dinner on your way home). We outline the combination of different methods to achieve these services, and demonstrate the emerging framework on two case studies, with a prototype extending in-use routing services.

[1]  Anita Graser,et al.  Assessing traffic performance using position density of sparse FCD , 2012, 2012 15th International IEEE Conference on Intelligent Transportation Systems.

[2]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[3]  Kenneth E. Train,et al.  Discrete Choice Methods with Simulation , 2016 .

[4]  Günther R. Raidl,et al.  Effective Neighborhood Structures for the Generalized Traveling Salesman Problem , 2008, EvoCOP.

[5]  K. Train Discrete Choice Methods with Simulation , 2003 .

[6]  Antony Galton,et al.  Efficient generation of simple polygons for characterizing the shape of a set of points in the plane , 2008, Pattern Recognit..

[7]  Thomas Eiter,et al.  Lightweight Spatial Conjunctive Query Answering Using Keywords , 2013, ESWC.

[8]  Atanas Kiryakov,et al.  KIM - Semantic Annotation Platform , 2003, SEMWEB.

[9]  Ian Horrocks,et al.  Handbook of Knowledge Representation Edited Description Logics 3.1 Introduction , 2022 .

[10]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[11]  G Stix,et al.  The mice that warred. , 2001, Scientific American.

[12]  Rolf Nyberg Geographic Information Systems and Computer Cartography , 1996 .

[13]  Diego Calvanese,et al.  The MASTRO system for ontology-based data access , 2011, Semantic Web.

[14]  Hans Tompits,et al.  A Uniform Integration of Higher-Order Reasoning and External Evaluations in Answer-Set Programming , 2005, IJCAI.

[15]  Michael N. DeMers,et al.  Fundamentals of Geographic Information Systems , 1996 .

[16]  Yaser A. Bishr Geospatial Semantic Web: Applications , 2008, Encyclopedia of GIS.

[17]  Peter F. Patel-Schneider,et al.  OWL 2 Web Ontology Language Primer (Second Edition) , 2012 .

[18]  Adolfo Jonathan Salinas-López,et al.  CEUR Workshop Proceedings , 2015 .

[19]  Peter F. Patel-Schneider,et al.  OWL 2 Web Ontology Language , 2009 .

[20]  Diego Calvanese,et al.  Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.

[21]  Xin Gao,et al.  A Heuristic Map-Matching Algorithm by Using Vector-Based Recognition , 2007, 2007 International Multi-Conference on Computing in the Global Information Technology (ICCGI'07).

[22]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[23]  Maurizio Lenzerini,et al.  Data integration: a theoretical perspective , 2002, PODS.

[24]  Markus Stocker,et al.  Owlgres: A Scalable OWL Reasoner , 2008, OWLED.

[25]  Christopher B. Jones,et al.  Geographical Information Systems and Computer Cartography , 1997 .

[26]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[27]  Michael N. DeMers Fundamentals of geographic information systems (4. ed.) , 2008 .

[28]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[29]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .