Edge Isoperimetric Inequalities for Powers of the Hypercube.

For positive integers $n$ and $r$, we let $Q_n^r$ denote the $r$th power of the $n$-dimensional discrete hypercube graph, i.e.\ the graph with vertex-set $\{0,1\}^n$, where two 0-1 vectors are joined if they are Hamming distance at most $r$ apart. We study edge isoperimetric inequalities for this graph. Harper, Bernstein, Lindsey and Hart proved a best-possible edge isoperimetric inequality for this graph in the case $r=1$. For each $r \geq 2$, we obtain an edge isoperimetric inequality for $Q_n^r$; our inequality is tight up to a constant factor depending only upon $r$. Our techniques also yield an edge isoperimetric inequality for the `Kleitman-West graph' (the graph whose vertices are all the $k$-element subsets of $\{1,2,\ldots,n\}$, where two $k$-element sets have an edge between them if they have symmetric difference of size two); this inequality is sharp up to a factor of $2+o(1)$ for sets of size ${n -s \choose k-s}$, where $k=o(n)$ and $s \in \mathbb{N}$.

[1]  Jeffrey D. Ullman,et al.  Upper and Lower Bounds on the Cost of a Map-Reduce Computation , 2012, Proc. VLDB Endow..

[2]  F. Chung Discrete isoperimetric inequalities , 1996 .

[3]  B. Lindström,et al.  A Generalization of a Combinatorial Theorem of Macaulay , 1969 .

[4]  Rudolf Ahlswede,et al.  A Counterexample To Kleitman's Conjecture Concerning An Edge-Isoperimetric Problem , 1999, Comb. Probab. Comput..

[5]  I. Anderson Combinatorics of Finite Sets , 1987 .

[6]  S. Bezrukov Edge Isoperimetric Problems on Graphs , 2007 .

[7]  A. J. Bernstein,et al.  Maximally Connected Arrays on the n-Cube , 1967 .

[8]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[9]  John H. Lindsey,et al.  Assignment of Numbers to Vertices , 1964 .

[10]  Béla Bollobás,et al.  Edge-isoperimetric inequalities in the grid , 1991, Comb..

[11]  L. H. Harper On a problem of Kleitman and West , 1991, Discret. Math..

[12]  I. Leader Discrete isoperimetric inequalities and other combinatorial results , 1989 .

[13]  Benny Sudakov,et al.  The minimum number of disjoint pairs in set systems and related problems , 2016, Comb..

[14]  Rudolf Ahlswede,et al.  Appendix: On Edge-Isoperimetric Theorems for Uniform Hypergraphs , 2006, GTIT-C.

[15]  Sergiu Hart,et al.  A note on the edges of the n-cube , 1976, Discret. Math..

[16]  L. H. Harper Optimal Assignments of Numbers to Vertices , 1964 .

[17]  L. H. Harper Global Methods for Combinatorial Isoperimetric Problems , 2004 .

[18]  Cyrus Rashtchian,et al.  Massively-Parallel Similarity Join, Edge-Isoperimetry, and Distance Correlations on the Hypercube , 2016, SODA.

[19]  D. Kleitman Families of Non-disjoint subsets* , 1966 .

[20]  R. Ahlswede,et al.  Graphs with maximal number of adjacent pairs of edges , 1978 .