Unidirectional and bi-directional growth of carbon nanotubes on the catalytic Co–Zr–N-(O) material

[1]  Ming Zhong,et al.  Leaf-like carbon frameworks dotted with carbon nanotubes and cobalt nanoparticles as robust catalyst for oxygen reduction in microbial fuel cell , 2021 .

[2]  Jaegeun Lee,et al.  Data Analytics Enables Significant Improvement of Robustness in Chemical Vapor Deposition of Carbon Nanotubes Based on Vacuum Baking , 2019, Industrial & Engineering Chemistry Research.

[3]  I. Gavrilin,et al.  Effect of the Plasma Functionalization of Carbon Nanotubes on the Formation of a Carbon Nanotube–Nickel Oxide Composite Electrode Material , 2018, Semiconductors.

[4]  T. Swager,et al.  Carbon Nanotube Chemical Sensors. , 2018, Chemical reviews.

[5]  T. Al‐Ansari,et al.  A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method , 2018, Materials.

[6]  Fernando Torres Andón,et al.  Carbon Nanotubes as Optical Sensors in Biomedicine. , 2017, ACS nano.

[7]  A. Pavlov,et al.  Growth of carbon nanotube arrays on various CtxMey alloy films by chemical vapour deposition method , 2017 .

[8]  N. M. Mohamed,et al.  Parametric study on vapor-solid-solid growth mechanism of multiwalled carbon nanotubes , 2016 .

[9]  A. Pavlov,et al.  Catalytic CVD-growth of array of multiwall carbon nanotubes on initially amorphous film Co–Zr–N–O , 2016 .

[10]  A. Pavlov,et al.  Use of thin film of a Co15Ti40N35 alloy for CVD catalytic growth of carbon nanotubes , 2016 .

[11]  J. Hoffman,et al.  Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength , 2015 .

[12]  Pascale Launois,et al.  In situ time resolved wide angle X-ray diffraction study of nanotube carpet growth: Nature of catalyst particles and progressive nanotube alignment , 2015 .

[13]  Xunyu Lu,et al.  Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. , 2015, Journal of the American Chemical Society.

[14]  Egor V. Lobiak,et al.  Ni–Mo and Co–Mo alloy nanoparticles for catalytic chemical vapor deposition synthesis of carbon nanotubes , 2015 .

[15]  T. Pan,et al.  Thermal chemical vapor deposition of layered aligned carbon‐nanotube films separated by graphite layers , 2013 .

[16]  Mostafa Bedewy,et al.  Statistical analysis of variation in laboratory growth of carbon nanotube forests and recommendations for improved consistency. , 2013, ACS nano.

[17]  V. Labunov,et al.  Multi‐level composite nanostructures based on the arrays of vertically aligned carbon nanotubes and planar graphite layers , 2011 .

[18]  Ryne P. Raffaelle,et al.  Carbon nanotubes for lithium ion batteries , 2009 .

[19]  Emmanuel Tylianakis,et al.  Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. , 2008, Nano letters.

[20]  A. Reina,et al.  Growth Mechanism of Long and Horizontally Aligned Carbon Nanotubes by Chemical Vapor Deposition , 2007 .

[21]  Mauricio Terrones,et al.  In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. , 2007, Nature nanotechnology.

[22]  I. N. Sorokin,et al.  Interaction between binary alloy thin films and silicon substrate: the conditions of bilayer formation and the effect of additional component , 2000 .

[23]  V. Pugachevich,et al.  Study of phase separation in Ti-Co-N thin films on silicon substrate , 1997 .

[24]  F. Pavlyak Modified relative sensitivity factors for Auger spectra , 1994 .

[25]  P. Aldebert,et al.  Structure and Ionic Mobility of Zirconia at High Temperature , 1985 .

[26]  D. Lichtman,et al.  Calculated Auger sensitivity factors compared to experimental handbook values , 1983 .

[27]  R. Balluffi Grain boundary diffusion mechanisms in metals , 1982 .

[28]  E. Rauh,et al.  High‐Temperature Phase Diagram for the System Zr. , 1977 .

[29]  T. Oh Gold-based bimetallic electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride–hydrogen peroxide fuel cell , 2021 .

[30]  F. Wei,et al.  Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review , 2019, Carbon.

[31]  J. Kennedy,et al.  Synthesis and enhanced field emission of zinc oxide incorporated carbon nanotubes , 2017 .

[32]  A. Boies,et al.  Catalyst nanoparticle growth dynamics and their influence on product morphology in a CVD process for continuous carbon nanotube synthesis , 2016 .

[33]  S. Hofmann Auger- and X-Ray Photoelectron Spectroscopy in Materials Science: A User-Oriented Guide , 2013 .

[34]  Mei Zhang,et al.  Electron field emission from transparent multiwalled carbon nanotube sheets for inverted field emission displays , 2010 .