“What You Need, Baby, I Got It”: Transposable Elements as Suppliers of Cis-Operating Sequences in Drosophila

Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. Drosophila is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new cis-regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in cis provided by TEs in Drosophila. Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome’s structure and stability. It emerges that Drosophila is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE–host interactions in any complex eukaryotic genome.

[1]  S. Waddell,et al.  Transposon expression in the Drosophila brain is driven by neighboring genes and diversifies the neural transcriptome , 2019, bioRxiv.

[2]  Anushya Muruganujan,et al.  Alliance of Genome Resources Portal: unified model organism research platform , 2019, Nucleic Acids Res..

[3]  E. Giordano,et al.  A New Portrait of Constitutive Heterochromatin: Lessons from Drosophila melanogaster. , 2019, Trends in genetics : TIG.

[4]  C. Feschotte,et al.  Host–transposon interactions: conflict, cooperation, and cooption , 2019, Genes & development.

[5]  Josefa González,et al.  Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster , 2019, Nucleic acids research.

[6]  M. Boutros,et al.  A large-scale resource for tissue-specific CRISPR mutagenesis in Drosophila , 2019, bioRxiv.

[7]  Nuno M C Martins,et al.  Islands of retroelements are major components of Drosophila centromeres , 2019, PLoS biology.

[8]  D. Mager,et al.  Mouse germ line mutations due to retrotransposon insertions , 2019, Mobile DNA.

[9]  Antonio Palazzo,et al.  Transcriptionally promiscuous “blurry” promoters in Tc1/mariner transposons allow transcription in distantly related genomes , 2019, Mobile DNA.

[10]  Y. Yamashita,et al.  Satellite DNA-containing gigantic introns in a unique gene expression program during Drosophila spermatogenesis , 2018, bioRxiv.

[11]  Giulia Antonazzo,et al.  FlyBase 2.0: the next generation , 2018, Nucleic Acids Res..

[12]  C. Vieira,et al.  Stress affects the epigenetic marks added by natural transposable element insertions in Drosophila melanogaster , 2018, bioRxiv.

[13]  E. Loreto,et al.  Drosophila relics hobo and hobo-MITEs transposons as raw material for new regulatory networks , 2018, Genetics and molecular biology.

[14]  D. Tegunov,et al.  Structures of transcription pre-initiation complex with TFIIH and Mediator , 2017, Nature.

[15]  S. Waddell,et al.  Resolving the prevalence of somatic transposition in Drosophila , 2017, eLife.

[16]  L. Viggiano,et al.  Does the Promoter Constitute a Barrier in the Horizontal Transposon Transfer Process? Insight from Bari Transposons , 2017, Genome biology and evolution.

[17]  E. Lerat,et al.  Evolutionary history of LTR-retrotransposons among 20 Drosophila species , 2017, Mobile DNA.

[18]  Yun Ding,et al.  Natural courtship song variation caused by an intronic retroelement in an ion channel gene , 2016, Nature.

[19]  Maite G. Barrón,et al.  Multiple Independent Retroelement Insertions in the Promoter of a Stress Response Gene Have Variable Molecular and Functional Effects in Drosophila , 2016, PLoS genetics.

[20]  P. D'addabbo,et al.  Identification of Bari Transposons in 23 Sequenced Drosophila Genomes Reveals Novel Structural Variants, MITEs and Horizontal Transfer , 2016, PloS one.

[21]  B. Piégu,et al.  Mariner Transposons Contain a Silencer: Possible Role of the Polycomb Repressive Complex 2 , 2016, PLoS genetics.

[22]  A. W. Harrington,et al.  Bioinformatic analyses of sense and antisense expression from terminal inverted repeat transposons in Drosophila somatic cells , 2016, Fly.

[23]  Karen G. Hales,et al.  Genetics on the Fly: A Primer on the Drosophila Model System , 2015, Genetics.

[24]  Joseph Russo,et al.  Antisense Transcription of Retrotransposons in Drosophila: An Origin of Endogenous Small Interfering RNA Precursors , 2015, Genetics.

[25]  Geoffrey J. Faulkner,et al.  Ubiquitous L1 Mosaicism in Hippocampal Neurons , 2015, Cell.

[26]  Evgeniya N Andreyeva,et al.  The Release 6 reference sequence of the Drosophila melanogaster genome , 2015, Genome research.

[27]  Josefa González,et al.  A Transposable Element Insertion Confers Xenobiotic Resistance in Drosophila , 2014, PLoS genetics.

[28]  Antonio Palazzo,et al.  The Drosophila mojavensis Bari3 transposon: distribution and functional characterization , 2014, Mobile DNA.

[29]  Y. Rong,et al.  Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila , 2014, The EMBO journal.

[30]  M. Washburn,et al.  Analysis of the heterochromatin protein 1 (HP1) interactome in Drosophila. , 2014, Journal of proteomics.

[31]  Maite G. Barrón,et al.  The transposable element Bari‐Jheh mediates oxidative stress response in Drosophila , 2014, Molecular ecology.

[32]  Arun S. Seetharam,et al.  Whole genome phylogeny for 21 Drosophila species using predicted 2b-RAD fragments , 2013, PeerJ.

[33]  Matthias Zytnicki,et al.  Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters , 2013, Proceedings of the National Academy of Sciences.

[34]  C. Ellison,et al.  Dosage Compensation via Transposable Element Mediated Rewiring of a Regulatory Network , 2013, Science.

[35]  M. Bozzetti,et al.  Functional Characterization of the Bari1 Transposition System , 2013, PloS one.

[36]  R. Mishra,et al.  Transposable Element ‘roo’ Attaches to Nuclear Matrix of the Drosophila melanogaster , 2013, Journal of insect science.

[37]  S. Wasserman,et al.  Combinatorial Effects of Transposable Elements on Gene Expression and Phenotypic Robustness in Drosophila melanogaster Development , 2013, G3: Genes, Genomes, Genetics.

[38]  Z. Weng,et al.  Transposition-Driven Genomic Heterogeneity in the Drosophila Brain , 2013, Science.

[39]  Piero Carninci,et al.  High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression , 2013, Genome research.

[40]  A. Kopp,et al.  Genomic resources for multiple species in the Drosophila ananassae species group , 2013, Fly.

[41]  S. Elgin,et al.  Ectopic assembly of heterochromatin in Drosophila melanogaster triggered by transposable elements , 2012, Proceedings of the National Academy of Sciences.

[42]  Xianchun Li,et al.  Accord insertion in the 5' flanking region of CYP6G1 confers nicotine resistance in Drosophila melanogaster. , 2012, Gene.

[43]  D. Ray,et al.  Survey Sequencing Reveals Elevated DNA Transposon Activity, Novel Elements, and Variation in Repetitive Landscapes among Vesper Bats , 2012, Genome biology and evolution.

[44]  J. Mattick,et al.  Somatic retrotransposition alters the genetic landscape of the human brain , 2011, Nature.

[45]  M. Pardue,et al.  Evolution of diverse mechanisms for protecting chromosome ends by Drosophila TART telomere retrotransposons , 2010, Proceedings of the National Academy of Sciences.

[46]  L. Viggiano,et al.  Evidences for insulator activity of the 5′UTR of the Drosophila melanogaster LTR-retrotransposon ZAM , 2010, Molecular Genetics and Genomics.

[47]  V. Valente,et al.  The hobo transposon and hobo-related elements are expressed as developmental genes in Drosophila. , 2009, Gene.

[48]  M. Gerstein,et al.  Unlocking the secrets of the genome , 2009, Nature.

[49]  H. Biessmann,et al.  Regulation of telomere length in Drosophila , 2009, Cytogenetic and Genome Research.

[50]  Josefa González,et al.  High Rate of Recent Transposable Element–Induced Adaptation in Drosophila melanogaster , 2008, PLoS biology.

[51]  D. Ray,et al.  Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. , 2008, Genome research.

[52]  Melanie A. Huntley,et al.  Evolution of genes and genomes on the Drosophila phylogeny , 2007, Nature.

[53]  S. Oehler,et al.  The DNA transposon Minos as a tool for transgenesis and functional genomic analysis in vertebrates and invertebrates , 2007, Genome Biology.

[54]  Rotem Sorek,et al.  The birth of new exons: mechanisms and evolutionary consequences. , 2007, RNA.

[55]  M. Rocchi,et al.  Heterochromatin protein 1 interacts with 5'UTR of transposable element ZAM in a sequence-specific fashion. , 2007, Gene.

[56]  A. Long,et al.  How Repeatable Are Associations Between Polymorphisms in achaete–scute and Bristle Number Variation in Drosophila? , 2007, Genetics.

[57]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[58]  Alex Andrianopoulos,et al.  Cis-Regulatory Elements in the Accord Retrotransposon Result in Tissue-Specific Expression of the Drosophila melanogaster Insecticide Resistance Gene Cyp6g1 , 2007, Genetics.

[59]  Cédric Feschotte,et al.  Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus , 2007, Proceedings of the National Academy of Sciences.

[60]  Donald G. Gilbert,et al.  DroSpeGe: rapid access database for new Drosophila species genomes , 2007, Nucleic Acids Res..

[61]  D. Ray,et al.  Bats with hATs: evidence for recent DNA transposon activity in genus Myotis. , 2006, Molecular biology and evolution.

[62]  N. Junakovic,et al.  Evidence for a functional interaction between the Bari1 transposable element and the cytochrome P450 cyp12a4 gene in Drosophila melanogaster. , 2005, Gene.

[63]  J. C. Yasuhara,et al.  Evolution of heterochromatic genes of Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[64]  M. Feder,et al.  Naturally occurring transposable elements disrupt hsp70 promoter function in Drosophila melanogaster. , 2005, Molecular biology and evolution.

[65]  Kazutoyo Osoegawa,et al.  TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. , 2004, Molecular biology and evolution.

[66]  D. Begun,et al.  Strong selective sweep associated with a transposon insertion in Drosophila simulans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[67]  S. Henikoff,et al.  Distinct HP1 and Su(var)3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. , 2003, Genes & development.

[68]  Gerald M Rubin,et al.  Heterochromatic sequences in a Drosophila whole-genome shotgun assembly , 2002, Genome Biology.

[69]  M. Ashburner,et al.  The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.

[70]  B. Charlesworth,et al.  S-element Insertions Are Associated with the Evolution of the Hsp70 Genes in Drosophila melanogaster , 2002, Current Biology.

[71]  R. ffrench-Constant,et al.  A Single P450 Allele Associated with Insecticide Resistance in Drosophila , 2002, Science.

[72]  B. Dastugue,et al.  Coupling of Enhancer and Insulator Properties Identified in Two Retrotransposons Modulates Their Mutagenic Impact on Nearby Genes , 2002, Molecular and Cellular Biology.

[73]  M. Feder,et al.  A Drosophila melanogaster strain from sub-equatorial Africa has exceptional thermotolerance but decreased Hsp70 expression. , 2001, The Journal of experimental biology.

[74]  Steven Henikoff,et al.  Chromatin profiling using targeted DNA adenine methyltransferase , 2001, Nature Genetics.

[75]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[76]  A. Long,et al.  Both naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster. , 2000, Genetics.

[77]  P. Geyer,et al.  Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength. , 1999, Genetics.

[78]  J. McDonald,et al.  An enhancer region within the copia untranslated leader contains binding sites for Drosophila regulatory proteins. , 1998, Gene.

[79]  T. Heidmann,et al.  A Nuclear Matrix/Scaffold Attachment Region Co-localizes with the Gypsy Retrotransposon Insulator Sequence* , 1998, The Journal of Biological Chemistry.

[80]  M. Levine,et al.  The gypsy insulator can function as a promoter‐specific silencer in the Drosophila embryo , 1997, The EMBO journal.

[81]  P. Geyer,et al.  A Drosophila insulator protein facilitates dosage compensation of the X chromosome min-white gene located at autosomal insertion sites. , 1995, Development.

[82]  H. Jäckle,et al.  Mesoderm-specific B104 expression in the Drosophila embryo is mediated by internal cis-acting elements of the transposon , 1995, Chromosoma.

[83]  H. Lipshitz,et al.  Spatially regulated expression of retrovirus-like transposons during Drosophila melanogaster embryogenesis. , 1994, Genetical research.

[84]  Steven Henikoff,et al.  Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila , 1994, Cell.

[85]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[86]  M. Steinemann,et al.  Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[87]  D. Dorsett,et al.  Repression of hsp70 heat shock gene transcription by the suppressor of hairy-wing protein of Drosophila melanogaster , 1991, Molecular and cellular biology.

[88]  V. Corces,et al.  Retrotransposon‐induced overexpression of a homeobox gene causes defects in eye morphogenesis in Drosophila. , 1991, The EMBO journal.

[89]  Il'in IuV,et al.  The leader region of the Drosophila transposon MDG1 contains transcription termination sites , 1990 .

[90]  A. Flavell,et al.  The transcriptional control regions of the copia retrotransposon. , 1989, Nucleic acids research.

[91]  V. Corces,et al.  The Drosophila melanogaster suppressor of Hairy-wing protein binds to specific sequences of the gypsy retrotransposon. , 1988, Genes & development.

[92]  T. W. Lyttle,et al.  Association between a satellite DNA sequence and the responder of segregation distorter in D. melanogaster , 1988, Cell.

[93]  I. Arkhipova,et al.  The steps of reverse transcription of drosophila mobile dispersed genetic elements and U3-R-U5 structure of their LTRs , 1986, Cell.

[94]  G. Rubin,et al.  Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing , 1986, Cell.

[95]  C. Hobbs,et al.  A structural basis for variegating position effects , 1984, Cell.

[96]  G. Rubin,et al.  Transposition of cloned P elements into Drosophila germ line chromosomes. , 1982, Science.

[97]  G. Rubin,et al.  Genetic transformation of Drosophila with transposable element vectors. , 1982, Science.

[98]  G. Rubin,et al.  The molecular basis of P-M hybrid dysgenesis: The nature of induced mutations , 1982, Cell.

[99]  G. Rubin,et al.  The molecular basis of P-M hybrid dysgenesis: The role of the P element, a P-strain-specific transposon family , 1982, Cell.

[100]  W. Doolittle,et al.  Selfish genes, the phenotype paradigm and genome evolution , 1980, Nature.

[101]  F. Crick,et al.  Selfish DNA: the ultimate parasite , 1980, Nature.

[102]  A. Rasmuson,et al.  Genetic instability in Drosophila melanogaster , 1980, Molecular and General Genetics MGG.

[103]  W. Engels Extrachromosomal control of mutability in Drosophila melanogaster. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[104]  G. Rubin,et al.  Transposition of elements of the 412, copia and 297 dispersed repeated gene families in drosophila , 1979, Cell.

[105]  G. Rubin,et al.  Polymorphisms in the chromosomal locations of elements of the 412, copia and 297 dispersed repeated gene families in drosophila , 1979, Cell.

[106]  R. Britten,et al.  Repeated Sequences in DNA , 1968 .

[107]  B. Mcclintock The origin and behavior of mutable loci in maize , 1950, Proceedings of the National Academy of Sciences.

[108]  L. Viggiano,et al.  Genetic, molecular and developmental analysis of the glutamine synthetase isozymes ofDrosophila melanogaster , 2005, Genetica.

[109]  P. Barsanti,et al.  The distribution of the transposable elementBari-1 in theDrosophila melanogaster andDrosophila simulans genomes , 2005, Genetica.

[110]  Lamellocitáira Jellemz,et al.  Drosophila melanogaster , 2004 .

[111]  P. Barsanti,et al.  MAX, a novel retrotransposon of the BEL-Pao family, is nested within the Bari 1 cluster at the heterochromatic h39 region of chromosome 2 in Drosophila melanogaster , 2003, Molecular Genetics and Genomics.

[112]  D. St Johnston The art and design of genetic screens: Drosophila melanogaster , 2002, Nature reviews. Genetics.

[113]  B. Dastugue,et al.  Mobilization of two retroelements, ZAM and Idefix, in a novel unstable line of Drosophila melanogaster. , 1999, Molecular biology and evolution.

[114]  C. Rieder,et al.  Greatwall kinase , 2004, The Journal of cell biology.

[115]  V. Cherkasova,et al.  [The leader region of the Drosophila transposon MDG1 contains transcription termination sites]. , 1990, Genetika.

[116]  J. Fristrom,et al.  Regulation of larval cuticle protein gene expression in Drosophila melanogaster. , 1989, Developmental genetics.

[117]  E. Berger,et al.  Cuticle protein gene expression during the third instar of Drosophila melanogaster , 1988 .

[118]  S. Limborska,et al.  Studies on the DNA fragments of mammals and Drosophila containing structural genes and adjacent sequences. , 1978, Cold Spring Harbor Symposia on Quantitative Biology.

[119]  R. Britten,et al.  Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. , 1968, Science.