Superradiant Quantum Heat Engine

Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

[1]  M. Merkli,et al.  Superradiance Transition in Photosynthetic Light-Harvesting Complexes , 2011, 1111.5443.

[2]  Detlef Hommel,et al.  Superradiance of quantum dots , 2007 .

[3]  Marlan O Scully,et al.  Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. , 2010, Physical review letters.

[4]  A. J. Short,et al.  Work extraction and thermodynamics for individual quantum systems , 2013, Nature Communications.

[5]  H T Quan,et al.  Quantum-classical transition of photon-Carnot engine induced by quantum decoherence. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Work extraction in the spin-boson model. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Upendra Harbola,et al.  Thermodynamics of quantum heat engines , 2013 .

[8]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  V. V. Temnov Superradiance and subradiance in the overdamped many-atom micromaser (5 pages) , 2005 .

[10]  P. Meystre,et al.  Theory of an optomechanical quantum heat engine , 2014, 1406.5160.

[11]  M. Holland,et al.  Intensity fluctuations in steady-state superradiance , 2010, 1005.0866.

[12]  R. Brewer,et al.  Observation of superradiant and subradiant spontaneous emission of two trapped ions , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[13]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[14]  Deniz Türkpençe,et al.  Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine. , 2015, Physical review. E.

[15]  M. Collett,et al.  Representations of Squeezed States with Thermal Noise , 1988 .

[16]  J. Åberg Catalytic coherence. , 2013, Physical review letters.

[17]  T. Rudolph,et al.  Quantum coherence, time-translation symmetry and thermodynamics , 2014, 1410.4572.

[18]  P. Strevens Iii , 1985 .

[19]  F. Schmidt-Kaler,et al.  Light interference from single atoms and their mirror images , 2001, Nature.

[20]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[21]  Tao Wang,et al.  Effects of reservoir squeezing on quantum systems and work extraction. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  M. Horodecki,et al.  Limitations on the Evolution of Quantum Coherences: Towards Fully Quantum Second Laws of Thermodynamics. , 2015, Physical review letters.

[23]  Friedemann Tonner,et al.  Autonomous quantum thermodynamic machines. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[25]  Y. K. Wang,et al.  Phase Transition in the Dicke Model of Superradiance , 1973 .

[26]  Franco Nori,et al.  Colloquium: The physics of Maxwell's demon and information , 2007, 0707.3400.

[27]  Jonathan Oppenheim Limitations for thermodynamical processing of coherences , 2014 .

[28]  Marlan O Scully,et al.  Extracting work from a single heat bath via vanishing quantum coherence. , 2002, Science.

[29]  R. Monshouwer,et al.  Superradiance and Exciton Delocalization in Bacterial Photosynthetic Light-Harvesting Systems , 1997 .

[30]  E. O. Schulz-DuBois,et al.  Three-Level Masers as Heat Engines , 1959 .

[31]  J. Ihalainen,et al.  Superradiance and Exciton (De)localization in Light-Harvesting Complex II from Green Plants? † , 2002 .

[32]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[33]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[34]  Quang,et al.  Localization of Superradiance near a Photonic Band Gap. , 1995, Physical review letters.

[35]  C. P. Sun,et al.  Maxwell's demon assisted thermodynamic cycle in superconducting quantum circuits. , 2005, Physical review letters.

[36]  J. Åberg Truly work-like work extraction via a single-shot analysis , 2011, Nature Communications.

[37]  Herbert Walther,et al.  Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence , 2003, Science.

[38]  Tien D Kieu The second law, Maxwell's demon, and work derivable from quantum heat engines. , 2004, Physical review letters.

[39]  F. Arecchi,et al.  Atomic coherent states in quantum optics , 1972 .

[40]  A. Jordan,et al.  Quantum Nernst engines , 2014, 1406.5023.

[41]  C. Flindt,et al.  Hybrid microwave-cavity heat engine. , 2013, Physical review letters.

[42]  A. Vourdas,et al.  Coherent mixed states and a generalised P representation , 1987 .

[43]  G. Scholes Designing light-harvesting antenna systems based on superradiant molecular aggregates , 2002 .

[44]  Ferdi Altintas,et al.  Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits , 2015 .

[45]  J. Berakdar,et al.  Thermal entanglement and efficiency of the quantum Otto cycle for the su(1,1) Tavis–Cummings system , 2011, 1103.0886.

[46]  Franco Nori,et al.  Quantum thermodynamic cycles and quantum heat engines. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  S. Barnett,et al.  Thermofield analysis of squeezing and statistical mixtures in quantum optics , 1985 .

[48]  M. Feld,et al.  Observation of Dicke Superradiance in Optically Pumped HF Gas , 1973 .

[49]  Superradiant and Subradiant Behavior of the Overdamped Many-Atom Micromaser , 2001 .

[50]  Christine Guerlin,et al.  Dicke quantum phase transition with a superfluid gas in an optical cavity , 2009, Nature.

[51]  David Jennings,et al.  Description of quantum coherence in thermodynamic processes requires constraints beyond free energy , 2014, Nature Communications.

[52]  J. Rossnagel,et al.  Nanoscale heat engine beyond the Carnot limit. , 2013, Physical review letters.

[53]  G. Agarwal Quantum-entanglement-initiated super Raman scattering , 2010, 1009.4449.

[54]  Vladimir I. Emel'yanov,et al.  Collective spontaneous emission (Dicke superradiance) , 1980 .

[55]  O. Fialko,et al.  Isolated quantum heat engine. , 2011, Physical review letters.

[56]  Keye Zhang,et al.  Quantum optomechanical heat engine. , 2014, Physical review letters.

[57]  Adiabatic approximation in the density matrix approach: non-degenerate systems , 2002, quant-ph/0201020.

[58]  C. P. Sun,et al.  Single-particle machine for quantum thermalization , 2009, 0904.2459.

[59]  Jian Zou,et al.  Quantum coherence rather than quantum correlations reflect the effects of a reservoir on a system's work capability. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Hao Wang,et al.  Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  S. Mukamel,et al.  Superradiance coherence sizes in single-molecule spectroscopy of LH2 antenna complexes , 1999 .

[62]  Sebastian Deffner,et al.  Thermodynamic universality of quantum Carnot engines. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  S. Mukamel,et al.  Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes , 1997 .

[64]  Marlan O Scully,et al.  Quantum heat engine power can be increased by noise-induced coherence , 2011, Proceedings of the National Academy of Sciences.

[65]  New classical properties of quantum coherent states , 1986 .

[66]  C. Fabre,et al.  Observation of Near-Infrared Dicke Superradiance on Cascading Transitions in Atomic Sodium , 1976 .

[67]  A. Wallraff,et al.  Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate , 2014, Nature Communications.

[68]  Gershon Kurizki,et al.  Thermodynamic control by frequent quantum measurements , 2008, Nature.

[69]  Ralf Röhlsberger,et al.  Collective Lamb Shift in Single-Photon Superradiance , 2010, Science.

[70]  Alán Aspuru-Guzik,et al.  Thermodynamics of quantum coherence , 2013, 1308.1245.

[71]  Zhaoqi Wu,et al.  Quantum Otto engine of a two-level atom with single-mode fields. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  G. G. Giusteri,et al.  Cooperative robustness to static disorder: Superradiance and localization in a nanoscale ring to model light-harvesting systems found in nature , 2014, 1403.1779.

[73]  B. M. Fulk MATH , 1992 .