Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions

This paper presents a new algorithm for derivative-free optimization of expensive black-box objective functions subject to expensive black-box inequality constraints. The proposed algorithm, called ConstrLMSRBF, uses radial basis function (RBF) surrogate models and is an extension of the Local Metric Stochastic RBF (LMSRBF) algorithm by Regis and Shoemaker (2007a) [1] that can handle black-box inequality constraints. Previous algorithms for the optimization of expensive functions using surrogate models have mostly dealt with bound constrained problems where only the objective function is expensive, and so, the surrogate models are used to approximate the objective function only. In contrast, ConstrLMSRBF builds RBF surrogate models for the objective function and also for all the constraint functions in each iteration, and uses these RBF models to guide the selection of the next point where the objective and constraint functions will be evaluated. Computational results indicate that ConstrLMSRBF is better than alternative methods on 9 out of 14 test problems and on the MOPTA08 problem from the automotive industry (Jones, 2008 [2]). The MOPTA08 problem has 124 decision variables and 68 inequality constraints and is considered a large-scale problem in the area of expensive black-box optimization. The alternative methods include a Mesh Adaptive Direct Search (MADS) algorithm (Abramson and Audet, 2006 [3]; Audet and Dennis, 2006 [4]) that uses a kriging-based surrogate model, the Multistart LMSRBF algorithm by Regis and Shoemaker (2007a) [1] modified to handle black-box constraints via a penalty approach, a genetic algorithm, a pattern search algorithm, a sequential quadratic programming algorithm, and COBYLA (Powell, 1994 [5]), which is a derivative-free trust-region algorithm. Based on the results of this study, the results in Jones (2008) [2] and other approaches presented at the ISMP 2009 conference, ConstrLMSRBF appears to be among the best, if not the best, known algorithm for the MOPTA08 problem in the sense of providing the most improvement from an initial feasible solution within a very limited number of objective and constraint function evaluations.

[1]  Jack P. C. Kleijnen,et al.  Constrained optimization in expensive simulation: Novel approach , 2010, Eur. J. Oper. Res..

[2]  Christine A. Shoemaker,et al.  Local function approximation in evolutionary algorithms for the optimization of costly functions , 2004, IEEE Transactions on Evolutionary Computation.

[3]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[4]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[5]  Christine A. Shoemaker,et al.  Improved Strategies for Radial basis Function Methods for Global Optimization , 2007, J. Glob. Optim..

[6]  Julio R. Banga,et al.  Scatter search for chemical and bio-process optimization , 2007, J. Glob. Optim..

[7]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[8]  Abdel-Rahman Hedar,et al.  Studies on Metaheuristics for Continuous Global Optimization Problems , 2004 .

[9]  Meng Wang,et al.  Optimal Aeroacoustic Shape Design Using the Surrogate Management Framework , 2003 .

[10]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[11]  O. SIAMJ.,et al.  ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS , 1997 .

[12]  T Watson Layne,et al.  Multidisciplinary Optimization of a Supersonic Transport Using Design of Experiments Theory and Response Surface Modeling , 1997 .

[13]  Julio R. Banga,et al.  New heuristics for global optimization of complex bioprocesses , 2008 .

[14]  Hans-Martin Gutmann,et al.  A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..

[15]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[16]  Christine A. Shoemaker,et al.  ORBIT: Optimization by Radial Basis Function Interpolation in Trust-Regions , 2008, SIAM J. Sci. Comput..

[17]  Kenny Q. Ye,et al.  Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .

[18]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[19]  R. A. Cuninghame-Green,et al.  Applied geometric programming , 1976 .

[20]  H. Edwin Romeijn,et al.  A Response Surface Approach to Beam Orientation Optimization in Intensity-Modulated Radiation Therapy Treatment Planning , 2009, INFORMS J. Comput..

[21]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[22]  M. Roma,et al.  Large-Scale Nonlinear Optimization , 2006 .

[23]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[24]  Fred W. Glover,et al.  A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.

[25]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox , 2002 .

[26]  Susana Gomez,et al.  Advances in Optimization and Numerical Analysis , 1994 .

[27]  Julio R. Banga,et al.  Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems , 2006, BMC Bioinformatics.

[28]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox, Version 2.0 , 2002 .

[29]  Farrokh Mistree,et al.  Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization , 2001 .

[30]  John L. Nazareth,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[31]  Andrew D. Back,et al.  Radial Basis Functions , 2001 .

[32]  Julio R. Banga,et al.  Improved scatter search for the global optimization of computationally expensive dynamic models , 2009, J. Glob. Optim..

[33]  Liang Shi,et al.  ASAGA: an adaptive surrogate-assisted genetic algorithm , 2008, GECCO '08.

[34]  Katya Scheinberg,et al.  Recent progress in unconstrained nonlinear optimization without derivatives , 1997, Math. Program..

[35]  Carlos A. Coello Coello,et al.  Constraint-handling in genetic algorithms through the use of dominance-based tournament selection , 2002, Adv. Eng. Informatics.

[36]  Kenneth Holmström,et al.  Constrained Global Optimization with Radial Basis Functions , 2003 .

[37]  Mattias Björkman,et al.  Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions , 2000 .

[38]  Rick Hesse A Heuristic Search Procedure for Estimating a Global Solution of Nonconvex Programming Problems , 1973, Oper. Res..

[39]  Khaled Rasheed,et al.  Comparison of methods for developing dynamic reduced models for design optimization , 2002, Soft Comput..

[40]  Nils-Hassan Quttineh,et al.  An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization , 2008 .

[41]  R. Gunst Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[42]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[43]  Eric Walter,et al.  An informational approach to the global optimization of expensive-to-evaluate functions , 2006, J. Glob. Optim..

[44]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[45]  Jack P. C. Kleijnen,et al.  Constrained Optimization in Simulation: A Novel Approach , 2008 .

[46]  Bryan A. Tolson,et al.  Dynamically dimensioned search algorithm for computationally efficient watershed model calibration , 2007 .

[47]  M. Powell The NEWUOA software for unconstrained optimization without derivatives , 2006 .

[48]  Charles Audet,et al.  Convergence of Mesh Adaptive Direct Search to Second-Order Stationary Points , 2006, SIAM J. Optim..

[49]  Fred W. Glover,et al.  Scatter Search and Local Nlp Solvers: A Multistart Framework for Global Optimization , 2006, INFORMS J. Comput..

[50]  M. J. D. Powell,et al.  UOBYQA: unconstrained optimization by quadratic approximation , 2002, Math. Program..

[51]  Fred W. Glover,et al.  Adaptive memory programming for constrained global optimization , 2010, Comput. Oper. Res..

[52]  Panos M. Pardalos,et al.  A Collection of Test Problems for Constrained Global Optimization Algorithms , 1990, Lecture Notes in Computer Science.

[53]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[54]  Rafael Martí,et al.  Scatter Search: Diseño Básico y Estrategias avanzadas , 2002, Inteligencia Artif..

[55]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[56]  Haralambos Sarimveis,et al.  A line up evolutionary algorithm for solving nonlinear constrained optimization problems , 2005, Comput. Oper. Res..

[57]  Neria Quimica,et al.  NEW HEURISTICS FOR GLOBAL OPTIMIZATION OF COMPLEX BIOPROCESSES , 2008 .

[58]  Christine A. Shoemaker,et al.  A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions , 2007, INFORMS J. Comput..

[59]  Christine A. Shoemaker,et al.  Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions , 2005, J. Glob. Optim..