Recent Advances in Earth-Abundant Photocathodes for Photoelectrochemical Water Splitting.

The conversion of solar energy into hydrogen through photoelectrochemical (PEC) water splitting is an attractive way to store renewable energy. Despite the intriguing concept of solar hydrogen production, efficient PEC devices based on earth-abundant semiconductors should be realized to compete economically with conventional steam reforming processes. Herein, recent milestones in photocathode development for PEC water splitting, particularly in earth-abundant semiconductors, in terms of new techniques for enhancing performance, as well as theoretical aspects, are highlighted. In addition, recent research into newly emerging low-cost p-type semiconductors in the PEC field, such as Cu2 BaSn(S,Se)4 and Sb2 Se3 , are scrutinized and the advantages and disadvantages of each material assessed.

[1]  Dunwei Wang,et al.  Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials , 2014, Nano Research.

[2]  Jiang Tang,et al.  Solution‐Processed Antimony Selenide Heterojunction Solar Cells , 2014 .

[3]  K. Domen,et al.  Particulate photocatalysts for overall water splitting , 2017 .

[4]  S. Tilley,et al.  Emerging Earth-abundant materials for scalable solar water splitting , 2017 .

[5]  D. Mitzi,et al.  BaCu2Sn(S,Se)4: Earth-Abundant Chalcogenides for Thin-Film Photovoltaics , 2016 .

[6]  T. Andreu,et al.  Turning Earth Abundant Kesterite-Based Solar Cells Into Efficient Protected Water-Splitting Photocathodes. , 2018, ACS applied materials & interfaces.

[7]  K. Domen,et al.  La5Ti2Cu1−xAgxS5O7 photocathodes operating at positive potentials during photoelectrochemical hydrogen evolution under irradiation of up to 710 nm , 2015 .

[8]  Rui Liu,et al.  Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers , 2014 .

[9]  A. Zakutayev,et al.  Research Update: Emerging chalcostibite absorbers for thin-film solar cells , 2018, APL Materials.

[10]  Jae Sung Lee,et al.  Oxygen-Intercalated CuFeO2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production , 2016 .

[11]  K. Sivula,et al.  Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction. , 2013, ACS applied materials & interfaces.

[12]  Takeshi Morikawa,et al.  Structural improvement of CaFe₂O₄ by metal doping toward enhanced cathodic photocurrent. , 2014, ACS applied materials & interfaces.

[13]  K. Sivula,et al.  Semiconducting materials for photoelectrochemical energy conversion , 2016 .

[14]  Jing Gu,et al.  p-type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. , 2014, Journal of the American Chemical Society.

[15]  Nathan S. Lewis,et al.  An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems , 2013 .

[16]  Xudong Xiao,et al.  Recent progress in photocathodes for hydrogen evolution , 2015 .

[17]  Chem. , 2020, Catalysis from A to Z.

[18]  M. Grätzel,et al.  Solution-Processed Cu2S Photocathodes for Photoelectrochemical Water Splitting , 2018 .

[19]  Yanfa Yan,et al.  Distant-Atom Mutation for Better Earth-Abundant Light Absorbers: A Case Study of Cu2BaSnSe4 , 2017 .

[20]  Weifeng Liu,et al.  Sb2Se3 solar cells prepared with selenized dc-sputtered metallic precursors , 2016, Journal of Materials Science: Materials in Electronics.

[21]  K. Sivula,et al.  Robust Hierarchically Structured Biphasic Ambipolar Oxide Photoelectrodes for Light‐Driven Chemical Regulation and Switchable Logic Applications , 2016, Advanced materials.

[22]  K. Domen,et al.  H2 Evolution from Water on Modified Cu2ZnSnS4 Photoelectrode under Solar Light , 2010 .

[23]  K. Domen,et al.  A Novel Photocathode Material for Sunlight‐Driven Overall Water Splitting: Solid Solution of ZnSe and Cu(In,Ga)Se2 , 2016 .

[24]  R. Brutchey,et al.  Solution Deposited Cu2BaSnS4–xSex from a Thiol–Amine Solvent Mixture , 2018 .

[25]  Jens K Nørskov,et al.  Materials for solar fuels and chemicals. , 2016, Nature materials.

[26]  Mark D. Symes,et al.  Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting , 2017 .

[27]  Jan C. Brauer,et al.  Synthesis and Characterization of High-Photoactivity Electrodeposited Cu2O Solar Absorber by Photoelectrochemistry and Ultrafast Spectroscopy , 2012 .

[28]  Shuai Chen,et al.  Nanostructured materials for water splitting - state of the art and future needs: A mini-review , 2016 .

[29]  Hyungkyu Han,et al.  Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting - superior role of 1D nanoarchitectures and of combined heterostructures. , 2017, Chemical Society reviews.

[30]  Yong Hun Kwon,et al.  Liquid-solid spinodal decomposition mediated synthesis of Sb₂Se₃ nanowires and their photoelectric behavior. , 2015, Nanoscale.

[31]  M. Grätzel,et al.  Transparent Cuprous Oxide Photocathode Enabling a Stacked Tandem Cell for Unbiased Water Splitting , 2015 .

[32]  K. Sivula,et al.  Photoelectrochemical Tandem Cells for Solar Water Splitting , 2013 .

[33]  Jiang Tang,et al.  In situ sulfurization to generate Sb2(Se1 − xSx)3 alloyed films and their application for photovoltaics , 2017 .

[34]  D. Friedrich,et al.  Evaluating Charge Carrier Transport and Surface States in CuFeO2 Photocathodes , 2017 .

[35]  Kulwinder Kaur,et al.  Strategic review of interface carrier recombination in earth abundant Cu–Zn–Sn–S–Se solar cells: current challenges and future prospects , 2017 .

[36]  Anders Hagfeldt,et al.  Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices , 2018, Nature Catalysis.

[37]  Mengxin Chen,et al.  Spatial control of cocatalysts and elimination of interfacial defects towards efficient and robust CIGS photocathodes for solar water splitting , 2018 .

[38]  María Isabel Díez-García,et al.  Investigating Water Splitting with CaFe2O4 Photocathodes by Electrochemical Impedance Spectroscopy. , 2016, ACS applied materials & interfaces.

[39]  Jiang Tang,et al.  Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries , 2015, Nature Photonics.

[40]  Seonhee Lee,et al.  Self-oriented Sb2Se3 nanoneedle photocathodes for water splitting obtained by a simple spin-coating method , 2017 .

[41]  Michael Grätzel,et al.  Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts. , 2014, Angewandte Chemie.

[42]  A. Walsh,et al.  The Steady Rise of Kesterite Solar Cells , 2017 .

[43]  Nelson A. Kelly,et al.  A solar-powered, high-efficiency hydrogen fueling system using high-pressure electrolysis of water: Design and initial results , 2008 .

[44]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[45]  Yanfa Yan,et al.  Synthesis and characterization of photoelectrochemical and photovoltaic Cu2BaSnS4 thin films and solar cells , 2017 .

[46]  R. Palgrave,et al.  Engineering Valence Band Dispersion for High Mobility p-Type Semiconductors , 2017 .

[47]  Yasumichi Matsumoto,et al.  Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. , 2010, Journal of the American Chemical Society.

[48]  Y. Mai,et al.  Efficiency enhancement of Sb2Se3 thin-film solar cells by the co-evaporation of Se and Sb2Se3 , 2016 .

[49]  Min Kyu Kim,et al.  A highly efficient Cu(In,Ga)(S,Se)2 photocathode without a hetero-materials overlayer for solar-hydrogen production , 2018, Scientific Reports.

[50]  Kevin Sivula,et al.  Toward Economically Feasible Direct Solar-to-Fuel Energy Conversion. , 2015, The journal of physical chemistry letters.

[51]  Jiang Tang,et al.  Antimony selenide thin-film solar cells , 2016 .

[52]  Yasumichi Matsumoto,et al.  New photocathode materials for hydrogen evolution: calcium iron oxide (CaFe2O4) and strontium iron oxide (Sr7Fe10O22) , 1987 .

[53]  K. Domen,et al.  Chalcopyrite Thin Film Materials for Photoelectrochemical Hydrogen Evolution from Water under Sunlight , 2015 .

[54]  D. Mitzi,et al.  Synthesis and Characterization of an Earth-Abundant Cu2BaSn(S,Se)4 Chalcogenide for Photoelectrochemical Cell Application. , 2016, The journal of physical chemistry letters.

[55]  Yanfa Yan,et al.  Earth-Abundant Orthorhombic BaCu2Sn(SexS1–x)4 (x ≈ 0.83) Thin Film for Solar Energy Conversion , 2016 .

[56]  T. Moehl,et al.  Photocorrosion-resistant Sb2Se3 photocathodes with earth abundant MoSx hydrogen evolution catalyst , 2017 .

[57]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[58]  Yanfa Yan,et al.  Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics. , 2016, Physical chemistry chemical physics : PCCP.

[59]  Changli Li,et al.  Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer , 2015 .

[60]  Kevin Sivula,et al.  A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting , 2014 .

[61]  Kevin Sivula,et al.  Enhancing the Performance of a robust sol-gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction. , 2015, ChemSusChem.

[62]  Roel van de Krol,et al.  Spray pyrolysis of CuBi2O4 photocathodes: improved solution chemistry for highly homogeneous thin films , 2017 .

[63]  Changli Li,et al.  Solution-processed CuSbS2 thin film: A promising earth-abundant photocathode for efficient visible-light-driven hydrogen evolution , 2016 .

[64]  Liang Gao,et al.  Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer , 2017, Nature Energy.

[65]  Kazuhiro Sayama,et al.  High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. , 2007, Journal of combinatorial chemistry.

[66]  Xin Jiang,et al.  Scalable Low-Band-Gap Sb2Se3 Thin-Film Photocathodes for Efficient Visible-Near-Infrared Solar Hydrogen Evolution. , 2017, ACS nano.

[67]  Frank E. Osterloh,et al.  Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals , 2016 .

[68]  Jooho Moon,et al.  Enhanced Photocurrent of Transparent CuFeO2 Photocathodes by Self-Light-Harvesting Architecture. , 2017, ACS applied materials & interfaces.

[69]  G. Gary Wang,et al.  Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting , 2017 .

[70]  Hyunwoong Park,et al.  A facile synthesis of CuFeO2 and CuO composite photocatalyst films for the production of liquid formate from CO2 and water over a month , 2017 .

[71]  D. Fichou,et al.  Cu2O Photocathode for Low Bias Photoelectrochemical Water Splitting Enabled by NiFe-Layered Double Hydroxide Co-Catalyst , 2016, Scientific Reports.

[72]  Jooho Moon,et al.  Controlled Electrodeposition of Photoelectrochemically Active Amorphous MoS x Cocatalyst on Sb2Se3 Photocathode. , 2018, ACS applied materials & interfaces.

[73]  João Lúcio de Azevedo,et al.  Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water‐Splitting Photocathodes , 2014 .

[74]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[75]  D. Mitzi,et al.  Defect Engineering in Multinary Earth‐Abundant Chalcogenide Photovoltaic Materials , 2017 .

[76]  Sudip Kumar Batabyal,et al.  Cation Substitution of Solution‐Processed Cu2ZnSnS4 Thin Film Solar Cell with over 9% Efficiency , 2015 .

[77]  D. Oleszak,et al.  Structure and Hyperfine Interactions of Mechanically Activated Delafossite CuFeO2 , 2018 .

[78]  Jooho Moon,et al.  Photoelectrodes based on 2D opals assembled from Cu-delafossite double-shelled microspheres for an enhanced photoelectrochemical response. , 2018, Nanoscale.

[79]  João Lúcio de Azevedo,et al.  Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes , 2016 .

[80]  A. Walsh,et al.  Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 , 2010 .

[81]  Jiangtian Li,et al.  Photoelectrochemical overall water splitting with textured CuBi2O4 as a photocathode. , 2018, Chemical communications.

[82]  Yang Li,et al.  Accelerated Optimization of TiO2/Sb2Se3 Thin Film Solar Cells by High‐Throughput Combinatorial Approach , 2017 .

[83]  Mahesh Datt Bhatt,et al.  Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells , 2015 .

[84]  Weifeng Liu,et al.  Rapid thermal process to fabricate Sb2Se3 thin film for solar cell application , 2016 .

[85]  Douglas M. Bishop,et al.  Solution-Processed Cd-Substituted CZTS Photocathode for Efficient Solar Hydrogen Evolution from Neutral Water , 2018 .

[86]  T. Lana-Villarreal,et al.  Sol–gel copper chromium delafossite thin films as stable oxide photocathodes for water splitting , 2015 .

[87]  Y. Lai,et al.  Photoelectrochemically deposited Sb2Se3 thin films: deposition mechanism and characterization , 2015 .

[88]  K. Sivula,et al.  Enhancing the Charge Separation in Nanocrystalline Cu2ZnSnS4 Photocathodes for Photoelectrochemical Application: The Role of Surface Modifications. , 2014, The journal of physical chemistry letters.

[89]  G. Rignanese,et al.  Low Hole Effective Mass p-type Transparent Conducting Oxides: Identification and Design Principles , 2013, 1304.6054.

[90]  G. N. Baum,et al.  Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry , 2013 .

[91]  K. Domen,et al.  Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting , 2013 .

[92]  D. Mitzi,et al.  Earth‐Abundant Chalcogenide Photovoltaic Devices with over 5% Efficiency Based on a Cu2BaSn(S,Se)4 Absorber , 2017, Advanced materials.

[93]  Philip Jackson,et al.  Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% , 2016 .

[94]  Ming Jia,et al.  Preparation and characterization of Bi-doped antimony selenide thin films by electrodeposition , 2011 .

[95]  D. Mitzi,et al.  Efficient and Stable Pt/TiO2/CdS/Cu2BaSn(S,Se)4 Photocathode for Water Electrolysis Applications , 2018 .

[96]  Jiang Tang,et al.  Characterization of Mg and Fe doped Sb2Se3 thin films for photovoltaic application , 2016 .

[97]  Don Kim,et al.  Photoelectrochemical Water Splitting on a Delafossite CuGaO 2 Semiconductor Electrode , 2014 .

[98]  W. Jo,et al.  Adjusting the Anisotropy of 1D Sb2Se3 Nanostructures for Highly Efficient Photoelectrochemical Water Splitting , 2018 .

[99]  Liang Gao,et al.  6.5% Certified Efficiency Sb2Se3 Solar Cells Using PbS Colloidal Quantum Dot Film as Hole-Transporting Layer , 2017 .

[100]  K. Domen,et al.  Powder-based (CuGa1−yIny)1−xZn2xS2 solid solution photocathodes with a largely positive onset potential for solar water splitting , 2018 .

[101]  Gunawan,et al.  Pt/In2S3/CdS/Cu2ZnSnS4 Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation. , 2015, Journal of the American Chemical Society.

[102]  A. Asthagiri,et al.  Hole Thermalization Dynamics Facilitate Ultrafast Spatial Charge Separation in CuFeO2 Solar Photocathodes , 2018 .

[103]  M. Grätzel,et al.  A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes , 2017 .

[104]  Y. Mai,et al.  Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization , 2017 .

[105]  Jooho Moon,et al.  Template-directed fabrication of vertically aligned Cu 2 ZnSnS 4 nanorod arrays for photoelectrochemical applications via a non-toxic solution process , 2017 .

[106]  Li-ping Zhu,et al.  Extended Light Harvesting with Dual Cu2O‐Based Photocathodes for High Efficiency Water Splitting , 2018 .

[107]  James L. Young,et al.  Employing Overlayers To Improve the Performance of Cu2BaSnS4 Thin Film based Photoelectrochemical Water Reduction Devices , 2017 .

[108]  Michael Grätzel,et al.  Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst , 2014, Nature Communications.

[109]  Yong Lei,et al.  p-Type CuBi2O4: an easily accessible photocathodic material for high-efficiency water splitting , 2016 .

[110]  Ahmed Abdel-Wahab,et al.  Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis , 2015 .

[111]  Jooho Moon,et al.  Molecular Chemistry-Controlled Hybrid Ink-Derived Efficient Cu2ZnSnS4 Photocathodes for Photoelectrochemical Water Splitting , 2016 .

[112]  Donghyeon Kang,et al.  Photoelectrochemical Properties and Photostabilities of High Surface Area CuBi2O4 and Ag-Doped CuBi2O4 Photocathodes , 2016 .

[113]  Peter Bogdanoff,et al.  Comprehensive Evaluation of CuBi2O4 as a Photocathode Material for Photoelectrochemical Water Splitting , 2016 .

[114]  Jian V. Li,et al.  Atomic Layer Deposited Gallium Oxide Buffer Layer Enables 1.2 V Open‐Circuit Voltage in Cuprous Oxide Solar Cells , 2014, Advanced materials.

[115]  Michael Grätzel,et al.  Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. , 2016, Nano letters.

[116]  K. Domen,et al.  Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes , 2015 .

[117]  G. Wang,et al.  Enhanced Sb2Se3 solar cell performance through theory‐guided defect control , 2017 .

[118]  Liang Gao,et al.  Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells , 2017 .