Approximate convex hull of affine iterated function system attractors
暂无分享,去创建一个
[1] John C. Hart,et al. Bounding recursive procedural models using convex optimization , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..
[2] Tomasz Martyn. The attractor-wrapping approach to approximating convex hulls of 2D affine IFS attractors , 2009, Comput. Graph..
[3] Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions , 1996, Discret. Comput. Geom..
[4] Jonathan Rice. Spatial Bounding of Self-Affine Iterated Function System Attractor Sets , 1996, Graphics Interface.
[6] Michael F. Barnsley,et al. Fractals everywhere, 2nd Edition , 1993 .
[7] Andrew Vince,et al. The Eigenvalue Problem for Linear and Affine Iterated Function Systems , 2010, 1004.5040.
[8] Hua Li,et al. Fast and accurate determination of the spatial boundary of IFS attractors , 1999, Comput. Graph..
[9] Min-Yang Yang,et al. Offset Triangular Mesh Using the Multiple Normal Vectors of a Vertex , 2004 .
[10] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[12] Dong-Jin Yoo,et al. General 3D offsetting of a triangular net using an implicit function and the distance fields , 2009 .
[13] Michael F. Barnsley,et al. Fractals everywhere , 1988 .
[14] John C. Hart,et al. Efficient antialiased rendering of 3-D linear fractals , 1991, SIGGRAPH.
[15] C. Gentil. Les fractales en synthèse d'images : le modèle IFS , 1992 .
[16] Yang Wang,et al. GEOMETRY OF SELF-AFFINE TILES II , 1999 .
[17] Tomek Martyn. Tight bounding ball for affine IFS attractor , 2003, Comput. Graph..
[18] M. Barnsley,et al. A Characterization of Hyperbolic Affine Iterated Function Systems , 2009, 0908.1416.
[19] Tomasz Martyn. Realistic rendering 3D IFS fractals in real-time with graphics accelerators , 2010, Comput. Graph..
[20] David Canright. Estimating the spatial extent of attractors of iterated function systems , 1994, Comput. Graph..