Algorithms on Graphs with Small Dominating Targets

A dominating target of a graph G=(V,E) is a set of vertices T s.t. for all W⊆V, if T⊆W and induced subgraph on W is connected, then W is a dominating set of G. The size of the smallest dominating target is called dominating target number of the graph, dt(G). We provide polynomial time algorithms for minimum connected dominating set, Steiner set, and Steiner connected dominating set in dominating-pair graphs (i.e., dt(G)=2). We also give approximation algorithm for minimum connected dominating set with performance ratio 2 on graphs with small dominating targets. This is a significant improvement on appx ≤d(opt + 2) given by Fomin et.al. [2004] on graphs with small d-octopus. Classification: Dominating target, d-octopus, Dominating set, Dominating-pair graph, Steiner tree.

[1]  Hans Jürgen Prömel,et al.  RNC-Approximation Algorithms for the Steiner Problem , 1997, STACS.

[2]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[3]  Samir Khuller,et al.  Approximation Algorithms for Connected Dominating Sets , 1996, ESA.

[4]  Alexander Schrijver,et al.  Paths, Flows, and VLSI-Layout , 1990 .

[5]  Samir Khuller,et al.  Improved Methods for Approximating Node Weighted Steiner Trees and Connected Dominating Sets , 1998, FSTTCS.

[6]  C. Pandu Rangan,et al.  Connected Domination and Steiner Set on Asteroidal Triple-Free Graphs , 1993, WADS.

[7]  Dieter Kratsch,et al.  On the structure of graphs with bounded asteroidal number , 1999, Electron. Notes Discret. Math..

[8]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[9]  Andrew B. Kahng,et al.  On wirelength estimations for row-based placement , 1998, ISPD '98.

[10]  Luca Trevisan,et al.  Improved Non-approximability Results for Vertex Cover with Density Constraints , 1996, COCOON.

[11]  Fedor V. Fomin,et al.  Algorithms for graphs with small octopus , 2004, Discret. Appl. Math..

[12]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[13]  Stephan Olariu,et al.  Asteroidal Triple-Free Graphs , 1997, SIAM J. Discret. Math..

[14]  Alex Zelikovsky,et al.  Improved Steiner tree approximation in graphs , 2000, SODA '00.

[15]  A. Kahng,et al.  On optimal interconnections for VLSI , 1994 .

[16]  Michael Randolph Garey,et al.  Johnson: "computers and intractability , 1979 .

[17]  Dieter Kratsch,et al.  On the Structure of Graphs with Bounded Asteroidal Number , 1999, Graphs Comb..

[18]  Deying Li,et al.  A polynomial‐time approximation scheme for the minimum‐connected dominating set in ad hoc wireless networks , 2003, Networks.

[19]  Amir Pnueli,et al.  Permutation Graphs and Transitive Graphs , 1972, JACM.

[20]  J. Spinrad,et al.  Between O(nm) and O(nα) , 2003, SODA '03.