Advances in Feel++ : A Domain Specific Embedded Language in C++ for Partial Differential Equations
暂无分享,去创建一个
Christophe Trophime | Gonçalo Pena | Christophe Prud'homme | Vincent Chabannes | Mourad Ismail | Abdoulaye Samake | Vincent Doyeux | Cécile Daversin | V. Doyeux | M. Ismail | C. Prud'homme | C. Trophime | G. Pena | A. Samaké | V. Chabannes | C. Daversin
[1] Gonçalo Pena,et al. High-order fluid-structure interaction in 2D and 3D application to blood flow in arteries , 2013, J. Comput. Appl. Math..
[2] C. Prud'homme,et al. A domain-specific embedded language in C++ for lowest-order discretizations of diffusive problems on general meshes , 2013 .
[3] J. Remacle,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[4] Christophe Geuzaine,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[5] Christophe Geuzaine,et al. GetDP: a general environment for the treatment of discrete problems , 1997 .
[6] Alfio Quarteroni,et al. High order methods for the approximation of the incompressible Navier–Stokes equations in a moving domain , 2012 .
[7] Robert C. Kirby. Optimizing FIAT with level 3 BLAS , 2006, TOMS.
[8] Christophe Prud'homme. Life: Overview of a Unified C++ Implementation of the Finite and Spectral Element Methods in 1D, 2D and 3D , 2006, PARA.
[9] Gonçalo Pena,et al. Construction of a high order fluid-structure interaction solver , 2010, J. Comput. Appl. Math..
[10] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[11] Yvon Maday,et al. The mortar element method for three dimensional finite elements , 1997 .
[12] Frédéric Alauzet,et al. Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error , 2011, SIAM J. Numer. Anal..
[13] Gonçalo Pena,et al. Spectral element approximation of the incompressible Navier-Stokes equations in a moving domain and applications , 2009 .
[14] William Gropp,et al. Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.
[15] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[16] Sandeep Koranne,et al. Boost C++ Libraries , 2011 .
[17] Robert C. Kirby,et al. Singularity-free evaluation of collapsed-coordinate orthogonal polynomials , 2010, TOMS.
[18] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[19] Anders Logg,et al. A compiler for variational forms , 2006, TOMS.
[20] Mark Frederick Hoemmen,et al. An Overview of Trilinos , 2003 .
[21] Tim Warburton,et al. An explicit construction of interpolation nodes on the simplex , 2007 .
[22] Gonçalo Pena,et al. Feel++ : A computational framework for Galerkin Methods and Advanced Numerical Methods , 2012 .
[23] Christophe Prud'homme,et al. Simulation of two-fluid flows using a finite element/level set method. Application to bubbles and vesicle dynamics , 2013, J. Comput. Appl. Math..
[24] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[25] Silvia Bertoluzza,et al. Substructuring preconditioners for the three fields domain decomposition method , 2003, Math. Comput..
[26] Vicente Hernández,et al. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.
[27] Alfio Quarteroni,et al. Domain Decomposition Methods for Partial Differential Equations , 1999 .
[28] G. Karniadakis,et al. Spectral/hp Element Methods for CFD , 1999 .
[29] Anders Logg,et al. Efficient compilation of a class of variational forms , 2007, TOMS.
[30] Tamara G. Kolda,et al. An overview of the Trilinos project , 2005, TOMS.
[31] Michael A. Heroux,et al. Trilinos users guide. , 2003 .
[32] Silvia Bertoluzza,et al. Analysis of substructuring preconditioners for mortar methods in an abstract framework , 2007, Appl. Math. Lett..
[33] Christophe Prud'homme,et al. A domain specific embedded language in C++ for automatic differentiation, projection, integration and variational formulations , 2006, Sci. Program..
[34] Robert C. Kirby,et al. Algorithm 839: FIAT, a new paradigm for computing finite element basis functions , 2004, TOMS.