Data-Driven Inverse Modelling of Ionic Polymer Conductive Composite Plates

Analytical solutions of the partial differential equations (PDEs) governing the behavior of ionic polymer plates have not been yet obtained and therefore only time consuming discrete numerical methods can be used instead. To avoid the computational cost of numerical solutions this paper introduces a solution construction method that exploits analytical approximation basis functions borrowed from solutions of single physics formulations associated with rectangular ionic polymer plates for artificial muscle applications. This is achieved by utilizing an inverse approach that exploits global optimization. An objective function is constructed to express the error between the experimental and analytical values of the selected state variables. Minimization of this objective function yields an efficient determination of the unknown free coefficients. Comparisons between the determined approximations and the experimental data along with computational efficiency improvements conclude this paper.

[1]  김찬홍 COMSOL Multiphysics 3.3 , 2006 .

[2]  Stephen Wolfram,et al.  The Mathematica book (4th edition) , 1999 .

[3]  K. Kim,et al.  Ionic polymer–metal composites: II. Manufacturing techniques , 2003 .

[4]  Gérard A. Maugin,et al.  Foundations and solid media , 1990 .

[5]  Jack Dongarra,et al.  Computational Science — ICCS 2003 , 2003, Lecture Notes in Computer Science.

[6]  P. M. Naghdi,et al.  A unified procedure for construction of theories of deformable media. I. Classical continuum physics , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[7]  John Michopoulos,et al.  Computational Modelling of Multi-field Ionic Continuum Systems , 2004, International Conference on Computational Science.

[8]  Charbel Farhat,et al.  On a data-driven environment for multiphysics applications , 2005, Future Gener. Comput. Syst..

[9]  Mohsen Shahinpoor,et al.  Ionic polymer–metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles , 2004 .

[10]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[11]  Charbel Farhat,et al.  DDEMA: A Data Driven Environment for Multiphysics Applications , 2003, International Conference on Computational Science.

[12]  Stephen Gilmore,et al.  Evaluating the Performance of Skeleton-Based High Level Parallel Programs , 2004, International Conference on Computational Science.

[13]  P. M. Naghdi,et al.  A unified procedure for construction of theories of deformable media. II. Generalized continua , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[14]  K. Kim,et al.  Ionic polymer–metal composites: IV. Industrial and medical applications , 2005 .

[15]  Gérard A. Maugin,et al.  Electrodynamics Of Continua , 1990 .

[16]  Gérard A. Maugin,et al.  Electrodynamics of Continua I: Foundations and Solid Media , 1989 .

[17]  John G. Michopoulos,et al.  Generalized multifield Von-Karman equations for large deflection of artificial muscle plates , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[18]  Hossein Zand The Mathematica Book, 4th edition: By Stephen Wolfram, Cambridge University Press and Wolfram Media, Cambridge, 1999, xxvi+1400 pp. Wolfram ISBN 1-57955-004-5, CUP ISBN 0-521-64314-7, £35.00 (paperback) , 2000, Comput. Educ..

[19]  A. C. Eringen,et al.  Electrodynamics of continua. Volume 1. Foundations and solid media. Volume 2 - Fluids and complex media , 1990 .

[20]  Chi-Teh Wang,et al.  Bending of Rectangular Plates With Large Deflections , 1948 .

[21]  Charbel Farhat,et al.  Modeling and Simulation of Multiphysics Systems , 2005, J. Comput. Inf. Sci. Eng..