Corotational nonlinear analyses of laminated shell structures using a 4-node quadrilateral flat shell element with drilling stiffness

A new 4-node quadrilateral flat shell element is developed for geometrically nonlinear analyses of thin and moderately thick laminated shell structures. The flat shell element is constructed by combining a quadrilateral area coordinate method (QAC) based membrane element AGQ6-II, and a Timoshenko beam function (TBF) method based shear deformable plate bending element ARS-Q12. In order to model folded plates and connect with beam elements, the drilling stiffness is added to the element stiffness matrix based on the mixed variational principle. The transverse shear rigidity matrix, based on the first-order shear deformation theory (FSDT), for the laminated composite plate is evaluated using the transverse equilibrium conditions, while the shear correction factors are not needed. The conventional TBF methods are also modified to efficiently calculate the element stiffness for laminate. The new shell element is extended to large deflection and post-buckling analyses of isotropic and laminated composite shells based on the element independent corotational formulation. Numerical results show that the present shell element has an excellent numerical performance for the test examples, and is applicable to stiffened plates.

[1]  Adnan Ibrahimbegovic,et al.  Quadrilateral finite elements for analysis of thick and thin plates , 1993 .

[2]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[3]  Song Cen,et al.  Application of the quadrilateral area co‐ordinate method: a new element for Mindlin–Reissner plate , 2006 .

[4]  Francesco Ubertini,et al.  Koiter analysis of folded structures using a corotational approach , 2013 .

[5]  M. A. Crisfield,et al.  Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics , 1997 .

[6]  K. Y. Sze,et al.  Popular benchmark problems for geometric nonlinear analysis of shells , 2004 .

[7]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[8]  Carlos A. Felippa,et al.  A unified formulation of small-strain corotational finite elements: I. Theory , 2005 .

[9]  R. M. Natal Jorge,et al.  On the use of an enhanced transverse shear strain shell element for problems involving large rotations , 2003 .

[10]  Ai Kah Soh,et al.  Development of a new quadrilateral thin plate element using area coordinates , 2000 .

[11]  Song Cen,et al.  Membrane elements insensitive to distortion using the quadrilateral area coordinate method , 2004 .

[12]  Chunhui Yang,et al.  Recent developments in finite element analysis for laminated composite plates , 2009 .

[13]  Thomas J. R. Hughes,et al.  A simple and efficient finite element for plate bending , 1977 .

[14]  Stefanos Vlachoutsis,et al.  Shear correction factors for plates and shells , 1992 .

[15]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[16]  Adnan Ibrahimbegovic,et al.  Plate quadrilateral finite element with incompatible modes , 1992 .

[17]  Ki-Du Kim,et al.  Linear static and dynamic analysis of laminated composite plates and shells using a 4-node quasi-conforming shell element , 2005 .

[18]  Raimund Rolfes,et al.  Improved transverse shear stresses in composite finite elements based on first order shear deformation theory , 1997 .

[19]  George Z. Voyiadjis,et al.  EFFICIENT AND ACCURATE FOUR-NODE QUADRILATERAL Co PLATE BENDING ELEMENT BASED ON ASSUMED STRAIN FIELDS , 1991 .

[20]  George Z. Voyiadjis,et al.  A 4‐node assumed strain quasi‐conforming shell element with 6 degrees of freedom , 2003 .

[21]  C. Rankin,et al.  THE USE OF PROJECTORS TO IMPROVE FINITE ELEMENT PERFORMANCE , 1988 .

[22]  Ted Belytschko,et al.  Regularization of material instabilities by meshfree approximations with intrinsic length scales , 2000 .

[23]  Song Cen,et al.  The analytical element stiffness matrix of a recent 4‐node membrane element formulated by the quadrilateral area co‐ordinate method , 2006 .

[24]  Yan Zhang,et al.  A family of simple and robust finite elements for linear and geometrically nonlinear analysis of laminated composite plates , 2006 .

[25]  Sven Klinkel,et al.  A continuum based three-dimensional shell element for laminated structures , 1999 .

[26]  Michel Brunet,et al.  Analysis of a rotation‐free 4‐node shell element , 2006 .

[27]  C. C. Rankin,et al.  Consistent linearization of the element-independent corotational formulation for the structural analysis of general shells , 1988 .

[28]  C. Rankin,et al.  Finite rotation analysis and consistent linearization using projectors , 1991 .

[29]  J. Craighead A MATHEMATICAL DISCUSSION OF COROTATIONAL FINITE ELEMENT MODELING , 2011 .

[30]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[31]  Robert Levy,et al.  Geometrically nonlinear analysis of shell structures using a flat triangular shell finite element , 2006 .

[32]  Song Cen,et al.  Area co-ordinates used in quadrilateral elements , 1999 .

[33]  Rakesh K. Kapania,et al.  A survey of recent shell finite elements , 2000 .

[34]  Timon Rabczuk,et al.  An alternative alpha finite element method with discrete shear gap technique for analysis of isotropic Mindlin-Reissner plates , 2011 .

[35]  E. Ramm,et al.  A unified approach for shear-locking-free triangular and rectangular shell finite elements , 2000 .

[36]  Chen Wanji,et al.  Refined quadrilateral element based on Mindlin/Reissner plate theory , 2000 .

[37]  Song Cen,et al.  A new twelve DOF quadrilateral element for analysis of thick and thin plates , 2001 .

[38]  J. Reddy Mechanics of laminated composite plates : theory and analysis , 1997 .

[39]  Jeong Whan Yoon,et al.  A new approach to reduce membrane and transverse shear locking for one‐point quadrature shell elements: linear formulation , 2006 .

[40]  F. Gruttmann,et al.  A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections , 1998 .

[41]  Song Cen,et al.  Application of the quadrilateral area coordinate method: a new element for laminated composite plate bending problems , 2007 .

[42]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[43]  K. Wiśniewski Finite Rotation Shells: Basic Equations and Finite Elements for Reissner Kinematics , 2010 .

[44]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[45]  Cen Song,et al.  Development of eight-node quadrilateral membrane elements using the area coordinates method , 2000 .

[46]  Sven Klinkel,et al.  A geometrical non‐linear brick element based on the EAS‐method , 1997 .

[47]  K. Bathe,et al.  Development of MITC isotropic triangular shell finite elements , 2004 .