Geostatistical Applications for Precision Agriculture

Preface 1 An Overview of Geostatistics and Precision Agriculture M. A. Oliver Abstract 1.1 Introduction 1.2 The Theory of Geostatistics 1.3 Case study: Football Field 2 Sampling in Precision Agriculture: Part I R. Kerry, M. A. Oliver and Z. L. Frogbrook Abstract 2.1 Introduction 2.2 Variograms to guide sampling 2.3 Use of the variogram to guide sampling for bulking 2.4 The variogram to guide grid-based sampling 2.5 Variograms to improve predictions from sparse sampling 2.6 Conclusions References 3 Sampling in Precision Agriculture, Optimal Designs from Uncertain Models B. P. Marchant and R. M. Lark Abstract 3.1 Introduction 3.2 The linear mixed model: estimation, predictions and uncertainty 3.3 Optimizing sampling schemes by spatial simulated annealing 3.4 Conclusions References 4 The Spatial Analysis of Yield Data T. W. Griffin Abstract 4.1 Introduction 4.2 Background of site-specific yield monitors 4.3 Managing Yield Monitor Data 4.4 Spatial statistical analysis of yield monitor data 4.5 Case study: Spatial analysis of yield monitor data from a field-scale experiment 4.6 Conclusion References 5 Space-time Geostatistics for Precision Agriculture: A Case Study of NDVI Mapping for a Dutch Potato Field G. B. M. Heuvelink and F. M. van Egmond Abstract 5.1 Introduction 5.2 Description of the Lauwersmeer study site and positional correction of NDVI data 5.3 Exploratory data analysis of Lauwersmeer data 5.4 Space-time geostatistics 5.5 Application of space-time geostatistics to the Lauwersmeer farm data 5.6 Discussion and Conclusions References 6 Delineating Site-specific Management Units with Proximal Sensors D. L. Corwin and S. M. Lesch Abstract 6.1 Introduction 6.2 Directed Sampling with a Proximal Sensor 6.3 Delineation of SSMUs with a Proximal Sensor 6.4 Case Study Using Apparent Soil Electrical Conductivity (ECa) - San Joaquin Valley, CA 6.5 Conclusion References 7 Using Ancillary Data to Improve Prediction of Soil and Crop Attributes in Precision Agriculture P. Goovaerts and R. Kerry Abstract 7.1 Introduction 7.2 Theory 7.3 Case study 1: the Yattendon site 7.4 Case Study 2: the Wallingford site 7.5 Conclusions References 8 Spatial Variation and Site-specific Management Zones R. Khosla, D. G. Westfall, R. M. Reich, J.S. Mahal and W. J. Gangloff Abstract 8.1 Introduction 8.2 Quantifying spatial variation in soil and crop properties 8.3 Site-specific management zones 8.4 Statistical evaluation of management zone delineation techniques: A case study 8.5 Conclusions References 9 Weeds, Worms and Geostatistics R. Webster Abstract 9.1 Introduction 9.2 Weeds 9.3 Nematodes 9.4 The future of geostatistics in precise pest control References 10 The Analysis of Spatial Experiments M.J. Pringle, T.F.A. Bishop, R.M. Lark, B.M. Whelan and A.B. McBratney Abstract 10.1 Introduction 10.2 Background 10.3 Management-class experiments 10.4 Local-response experiments 10.5 Alternative approaches to experimentation 10.6 Issues for the future 10.7 Conclusions References 11 Application of Geostatistical Simulation in Precision Agriculture R. Gebbers and S. de Bruin Abstract 11.1 Introduction 11.2 Case study I: uncertainty of a pH map 11.3 Case study II: uncertainty in the position of geographic objects 11.4 Case study III: uncertainty propagation in soil mapping 11.5 Application of geostatistical simulation in precision agriculture: summary References 12 Geostatistics and Precision Agriculture: A Way Forward J. K. Schueller Abstract 12.1 Introduction 12.2 Weather, time, and space 12.3 Farmers, advisors and researchers 12.4 Issues, ideas and questions 12.5 Past, present, and future References Appendix: Software Index

[1]  R. Webster,et al.  Geostatistical analysis of cyst nematodes in soil , 1992 .

[2]  R. Gerhards,et al.  Practical experiences with a system for site‐specific weed control in arable crops using real‐time image analysis and GPS‐controlled patch spraying , 2006 .

[3]  Niklas Lorén,et al.  Spatial prediction of weed intensities from exact count data and image‐based estimates , 2009 .

[4]  Torben Heisel,et al.  Weed Mapping with Co-Kriging Using Soil Properties , 2004, Precision Agriculture.

[5]  J. Cardina,et al.  Analysis of Spatial Distribution of Common Lambsquarters (Chenopodium album) in No-Till Soybean (Glycine max) , 1995, Weed Science.

[6]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[7]  Brett Whelan,et al.  Does kriging predict weed distributions accurately enough for site-specific weed control? , 2001 .

[8]  W. Donald,et al.  Geostatistics for Mapping Weeds, with a Canada Thistle (Cirsium arvense) Patch as a Case Study , 1994, Weed Science.

[9]  J. Rossi,et al.  Microspatial structure of a plant-parasitic nematode community in a sugarcane field in Martinique , 1996 .

[10]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[11]  G. Johnson,et al.  Spatial and Temporal Analysis of Weed Seedling Populations Using Geostatistics , 1996, Weed Science.

[12]  Brett Whelan,et al.  Sampling strategy is important for producing weed maps: a case study using kriging , 2002, Weed Science.

[13]  X. Sanchez‐Vila,et al.  Using Geostatistical Analysis to Evaluate the Presence of Rotylenchulus reniformis in Cotton Crops in Brazil: Economic Implications. , 2002, Journal of nematology.

[14]  D. Hawkins,et al.  Applications of geostatistics in plant nematology. , 1994, Journal of nematology.

[15]  T. Heisel,et al.  Annual weed distributions can be mapped with kriging , 1996 .

[16]  R. Reese Geostatistics for Environmental Scientists , 2001 .

[17]  Svend Christensen,et al.  Spatial correlation between weed species densities and soil properties , 2002 .

[18]  L. Taylor Assessing and Interpreting the Spatial Distributions of Insect Populations , 1984 .