Robotic Vision with the Conformal Camera: Modeling Perisaccadic Perception

Humans make about 3 saccades per second at the eyeball's speed of 700 deg/sec to reposition the high-acuity fovea on the targets of interest to build up understanding of a scene. The brain's visuosaccadic circuitry uses the oculomotor command of each impending saccade to shift receptive fields (RFs) to cortical locations before the eyes take them there, giving a continuous and stable view of the world. We have developed a model for image representation based on projective Fourier transform (PFT) intended for robotic vision, which may efficiently process visual information during the motion of a camera with silicon retina that resembles saccadic eye movements. Here, the related neuroscience background is presented, effectiveness of the conformal camera's non-Euclidean geometry in intermediate-level vision is discussed, and the algorithmic steps in modeling perisaccadic perception with PFT are proposed. Our modeling utilizes basic properties of PFT. First, PFT is computable by FFT in complex logarithmic coordinates that also approximate the retinotopy. Second, the shift of RFs in retinotopic (logarithmic) coordinates is modeled by the shift property of discrete Fourier transform. The perisaccadic mislocalization observed by human subjects in laboratory experiments is the consequence of the fact that RFs' shifts are in logarithmic coordinates.

[1]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[2]  L. Matin,et al.  Visual Perception of Direction for Stimuli Flashed During Voluntary Saccadic Eye Movements , 1965, Science.

[3]  M. Landy,et al.  The effect of viewpoint on perceived visual roughness. , 2007, Journal of vision.

[4]  M Concetta Morrone,et al.  Saccadic eye movements cause compression of time as well as space , 2005, Nature Neuroscience.

[5]  D. Heeger,et al.  Center-surround interactions in foveal and peripheral vision , 2000, Vision Research.

[6]  Clara D. Martin,et al.  ERP evidence for the split fovea theory , 2007, Brain Research.

[7]  A. J. van Opstal,et al.  Experimental test of visuomotor updating models that explain perisaccadic mislocalization. , 2008 .

[8]  P. Glimcher Making choices: the neurophysiology of visual-saccadic decision making , 2001, Trends in Neurosciences.

[9]  Thomas Wachtler,et al.  Perceptual evidence for saccadic updating of color stimuli. , 2008, Journal of vision.

[10]  David C. Burr,et al.  Compression of visual space before saccades , 1997, Nature.

[11]  Jacek Turski Geometric Fourier Analysis of the Conformal Camera for Active Vision , 2004, SIAM Rev..

[12]  R. J. Plymen,et al.  REPRESENTATION THEORY OF SEMISIMPLE GROUPS: An Overview Based on Examples , 1989 .

[13]  Alessandro Treves,et al.  Is the world full of circles? , 2002, Journal of vision.

[14]  Michael Henle Modern Geometries: The Analytic Approach , 1996 .

[15]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  J. Turski Harmonic analysis on SL(2, C ) and proje , 1998 .

[17]  S. Ullman High-Level Vision: Object Recognition and Visual Cognition , 1996 .

[18]  D. Burr,et al.  Keeping vision stable: rapid updating of spatiotopic receptive fields may cause relativistic-like effects , 2010 .

[19]  Giulio Sandini,et al.  Disparity Estimation on Log-Polar Images and Vergence Control , 2001, Comput. Vis. Image Underst..

[20]  Patrick Cavanagh,et al.  Clocking saccadic remapping , 2010 .

[21]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[22]  H. Basford,et al.  Optimal eye movement strategies in visual search , 2005 .

[23]  Carsten Finke,et al.  Perisaccadic Compression Correlates with Saccadic Peak Velocity: Differential Association of Eye Movement Dynamics with Perceptual Mislocalization Patterns , 2007, The Journal of Neuroscience.

[24]  B. Julesz,et al.  Perceptual sensitivity maps within globally defined visual shapes , 1994, Nature.

[25]  Marcus Kaiser,et al.  Perisaccadic Mislocalization Orthogonal to Saccade Direction , 2004, Neuron.

[26]  David Burr,et al.  Time Perception: Space–Time in the Brain , 2006, Current Biology.

[27]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Johan Wagemans,et al.  Transsaccadic identification of highly similar artificial shapes. , 2009, Journal of vision.

[29]  J. Turski Geometric Fourier Analysis for Computational Vision , 2005 .

[30]  Nicolas Tabareau,et al.  Geometry of the superior colliculus mapping and efficient oculomotor computation , 2007, Biological Cybernetics.

[31]  Heiko Neumann,et al.  Combined space-variant maps for optical-flow-based navigation , 2000, Biological Cybernetics.

[32]  Michal Lavidor,et al.  The nature of foveal representation , 2004, Nature Reviews Neuroscience.

[33]  J. Todd,et al.  The effects of viewing angle, camera angle, and sign of surface curvature on the perception of three-dimensional shape from texture. , 2007, Journal of vision.

[34]  C. Colby,et al.  Trans-saccadic perception , 2008, Trends in Cognitive Sciences.

[35]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[36]  S Anstis,et al.  Picturing Peripheral Acuity , 1998, Perception.

[37]  H. Blum Biological shape and visual science. I. , 1973, Journal of theoretical biology.

[38]  M. Sereno,et al.  Retinotopy and Attention in Human Occipital, Temporal, Parietal, and Frontal Cortex , 2008 .

[39]  Michael Leyton,et al.  A theory of information structure II: A theory of perceptual organization Journal of Mathematical Ps , 1986 .

[40]  Rufin VanRullen A simple translation in cortical log-coordinates may account for the pattern of saccadic localization errors , 2004, Biological cybernetics.

[41]  Lester C. Loschky,et al.  The contributions of central versus peripheral vision to scene gist recognition. , 2009, Journal of vision.

[42]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[43]  M. Wertheimer Laws of organization in perceptual forms. , 1938 .

[44]  Bart Krekelberg,et al.  Postsaccadic visual references generate presaccadic compression of space , 2000, Nature.

[45]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[46]  J. Gottlieb From a different point of view: extrastriate cortex integrates information across saccades. Focus on "Remapping in human visual cortex". , 2007, Journal of neurophysiology.

[47]  V. Javier Traver,et al.  Entropy-Based Saliency Computation in Log-Polar Images , 2008, VISAPP.

[48]  O. Grüsser,et al.  On the history of the ideas of efference copy and reafference. , 1995, Clio medica.

[49]  D. Burr,et al.  Selective suppression of the magnocellular visual pathway during saccadic eye movements , 1994, Nature.

[50]  Jacek Turski,et al.  Harmonic analysis for cognitive vision: perisaccadic perception , 2009, Electronic Imaging.

[51]  G Rees,et al.  The parallel brain: the cognitive neuroscience of the corpus callosum , 2004 .

[52]  Giulio Sandini,et al.  Foveated active tracking with redundant 2D motion parameters , 2002, Robotics Auton. Syst..

[53]  A. Cowey,et al.  The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors , 1985, Vision Research.

[54]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[55]  Giulio Sandini,et al.  Anthropomorphic Visual Sensors , 2005 .

[56]  Jacek Turski Projective Fourier analysis for patterns , 2000, Pattern Recognit..

[57]  D. Melcher Selective attention and the active remapping of object features in trans-saccadic perception , 2009, Vision Research.

[58]  David Williams,et al.  The locus of fixation and the foveal cone mosaic. , 2005, Journal of vision.

[59]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[60]  Giorgio Bonmassar,et al.  Space-Variant Fourier Analysis: The Exponential Chirp Transform , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[62]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[63]  David Melcher,et al.  Dynamic, object-based remapping of visual features in trans-saccadic perception. , 2008, Journal of vision.

[64]  Matteo Carandini,et al.  Two Distinct Mechanisms of Suppression in Human Vision , 2005, The Journal of Neuroscience.

[66]  C. Genovese,et al.  Remapping in human visual cortex. , 2007, Journal of neurophysiology.

[67]  Jacek Turski Projective Fourier analysis in computer vision: theory and computer simulations , 1997, Optics & Photonics.

[68]  Markus Lappe,et al.  Mislocalization of Perceived Saccade Target Position Induced by Perisaccadic Visual Stimulation , 2006, The Journal of Neuroscience.

[69]  Keiji Uchikawa,et al.  The role of presaccadic compression of visual space in spatial remapping across saccadic eye movements , 2003, Vision Research.

[70]  H. Honda The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades , 1991, Vision Research.

[71]  F. Scharnowski,et al.  Long-lasting modulation of feature integration by transcranial magnetic stimulation. , 2009, Journal of vision.

[72]  Jacek Turski,et al.  Computational harmonic analysis for human and robotic vision systems , 2006, Neurocomputing.

[73]  Markus Lappe,et al.  The Peri-Saccadic Perception of Objects and Space , 2008, PLoS Comput. Biol..

[74]  Eric L. Schwartz,et al.  Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding , 1980, Vision Research.

[75]  J. Schlag,et al.  Illusory localization of stimuli flashed in the dark before saccades , 1995, Vision Research.

[76]  P. Perona,et al.  What do we perceive in a glance of a real-world scene? , 2007, Journal of vision.

[77]  H. Blum Biological shape and visual science (part I) , 1973 .

[78]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[79]  A. Berthoz,et al.  From brainstem to cortex: Computational models of saccade generation circuitry , 2005, Progress in Neurobiology.

[80]  M Leyton,et al.  A theory of information structure. I. General principles , 1986 .

[81]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.