Zebrafish promoter microarrays identify actively transcribed embryonic genes

We have designed a zebrafish genomic microarray to identify DNA-protein interactions in the proximal promoter regions of over 11,000 zebrafish genes. Using these microarrays, together with chromatin immunoprecipitation with an antibody directed against tri-methylated lysine 4 of Histone H3, we demonstrate the feasibility of this method in zebrafish. This approach will allow investigators to determine the genomic binding locations of DNA interacting proteins during development and expedite the assembly of the genetic networks that regulate embryogenesis.

[1]  F. Cohen,et al.  Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray , 2003, Genome Biology.

[2]  Megan F. Cole,et al.  Genome-wide Map of Nucleosome Acetylation and Methylation in Yeast , 2005, Cell.

[3]  Z. Gong,et al.  Transcriptome Analysis of Zebrafish Embryogenesis Using Microarrays , 2005, PLoS genetics.

[4]  L. Hood,et al.  Regulatory gene networks and the properties of the developmental process , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Brand,et al.  Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. , 1998, Development.

[6]  E. Davidson,et al.  Gene regulatory networks for development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[8]  A. Kuroiwa,et al.  Zebrafish wnt11: pattern and regulation of the expression by the yolk cell and No tail activity , 1998, Mechanisms of Development.

[9]  S. Amacher Transcriptional regulation during zebrafish embryogenesis. , 1999, Current opinion in genetics & development.

[10]  Hae-Chul Park,et al.  Characterization and expression of a presomitic mesoderm-specific mespo gene in zebrafish , 2003, Development Genes and Evolution.

[11]  F. Wardle,et al.  Identifying transcriptional targets , 2004, Genome Biology.

[12]  Tony Kouzarides,et al.  Histone H3 lysine 4 methylation patterns in higher eukaryotic genes , 2004, Nature Cell Biology.

[13]  Leah Barrera,et al.  A high-resolution map of active promoters in the human genome , 2005, Nature.

[14]  A. Amsterdam,et al.  Transgenes as screening tools to probe and manipulate the zebrafish genome , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[15]  S. Russell,et al.  Genomic analysis of heat-shock factor targets in Drosophila , 2005, Genome Biology.

[16]  B. Paw,et al.  Zebrafish: a genetic model for vertebrate organogenesis and human disorders. , 2003, Frontiers in bioscience : a journal and virtual library.

[17]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[18]  J. Zeitlinger,et al.  Polycomb complexes repress developmental regulators in murine embryonic stem cells , 2006, Nature.

[19]  I. Dawid,et al.  Functional interaction of vega2 and goosecoid homeobox genes in zebrafish , 2000, Genesis.

[20]  D. Langenau,et al.  Making waves in cancer research: new models in the zebrafish. , 2005, BioTechniques.

[21]  J. Lieb,et al.  Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. , 2004, Current opinion in genetics & development.

[22]  Nicola J. Rinaldi,et al.  Serial Regulation of Transcriptional Regulators in the Yeast Cell Cycle , 2001, Cell.

[23]  Tim Hui-Ming Huang,et al.  Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. , 2002, Genes & development.

[24]  C. Nüsslein-Volhard,et al.  fork head domain genes in zebrafish , 1998, Development Genes and Evolution.

[25]  Donald R Love,et al.  Technology for high-throughput screens: the present and future using zebrafish. , 2004, Current opinion in biotechnology.

[26]  Nicola J. Rinaldi,et al.  Control of Pancreas and Liver Gene Expression by HNF Transcription Factors , 2004, Science.

[27]  Eric H Davidson,et al.  A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. , 2002, Developmental biology.

[28]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[29]  Eric S. Lander,et al.  Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse , 2005, Cell.

[30]  Charles Kooperberg,et al.  The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. , 2004, Genes & development.

[31]  S. Ekker,et al.  Zebrafish as a genomics research model. , 2004, Current pharmaceutical biotechnology.

[32]  Matthew Loose,et al.  A genetic regulatory network for Xenopus mesendoderm formation. , 2004, Developmental biology.

[33]  D. Botstein,et al.  Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF , 2001, Nature.

[34]  Stuart L. Schreiber,et al.  Active genes are tri-methylated at K4 of histone H3 , 2002, Nature.

[35]  M. Allende,et al.  Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. , 1996, Development.

[36]  B. Hogan,et al.  A mouse homologue of FAST-1 transduces TGFβ superfamily signals and is expressed during early embryogenesis , 1998, Mechanisms of Development.

[37]  Michael Q. Zhang,et al.  Use of Chromatin Immunoprecipitation To Clone Novel E2F Target Promoters , 2001, Molecular and Cellular Biology.

[38]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[39]  J. Postlethwait,et al.  A homeobox gene essential for zebrafish notochord development , 1995, Nature.

[40]  A. Amsterdam,et al.  A large-scale insertional mutagenesis screen in zebrafish. , 1999, Genes & development.

[41]  Paul Goldsmith,et al.  Zebrafish as a pharmacological tool: the how, why and when. , 2004, Current opinion in pharmacology.

[42]  Stuart L Schreiber,et al.  Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. , 2003, Molecular cell.

[43]  John R. Yates,et al.  Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation , 2005, Nature.

[44]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[45]  C. Kimmel,et al.  Zebrafish paraxial protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula mesoderm. , 1998, Development.

[46]  Edwin Cuppen,et al.  Efficient target-selected mutagenesis in zebrafish. , 2003, Genome research.

[47]  Michael Q. Zhang,et al.  A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Stephan Sauer,et al.  Chromatin signatures of pluripotent cell lines , 2006, Nature Cell Biology.

[49]  Ken W. Y. Cho,et al.  Xenopus as a model system to study transcriptional regulatory networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  D A Kane,et al.  The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. , 1996, Development.