On the Use of Neural Network as a Universal Approximator

Neural network process modelling needs the use of experimental design and studies. A new neural network constructive algorithm is proposed. Moreover, the paper deals with the influence of the parameters of radial basis function neural networks and multilayer perceptrons network in process modelling. Particularly, it is shown that the neural modelling, depending on learning approach, cannot be always validated for large classes of dynamic complex processes in comparison with Kolgomorov theorem. keywords. Function approximation, Radial Basis Function (RBF), MultiLayer Perceptron (MLP), Chaotic behaviour.

[1]  Pierre Borne Les réseaux de neurones. , 2006 .

[2]  M. Benrejeb,et al.  Sur l’unicité de la réponse d’un réseau d’énergie électrique en régime de défauts , 2006 .

[3]  Michel Verleysen,et al.  Width optimization of the Gaussian kernels in Radial Basis Function Networks , 2002, ESANN.

[4]  Peter Vas,et al.  Artificial-Intelligence-Based Electrical Machines and Drives: Application of Fuzzy, Neural, Fuzzy-neural, and Genetic-Algorithm-based Techniques , 1999 .

[5]  Mark J. L. Orr Optimising the widths of radial basis functions , 1998, Proceedings 5th Brazilian Symposium on Neural Networks (Cat. No.98EX209).

[6]  Jie Zhang,et al.  A Sequential Learning Approach for Single Hidden Layer Neural Networks , 1998, Neural Networks.

[7]  Sung Yang Bang,et al.  An Efficient Method to Construct a Radial Basis Function Neural Network Classifier , 1997, Neural Networks.

[8]  Panos J. Antsaklis,et al.  The dependence identification neural network construction algorithm , 1996, IEEE Trans. Neural Networks.

[9]  J. A. Leonard,et al.  Radial basis function networks for classifying process faults , 1991, IEEE Control Systems.

[10]  V. Kůrková Kolmogorov's Theorem Is Relevant , 1991, Neural Comput..

[11]  Tomaso A. Poggio,et al.  Representation Properties of Networks: Kolmogorov's Theorem Is Irrelevant , 1989, Neural Computation.

[12]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[13]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[14]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[15]  G. Watson Approximation theory and numerical methods , 1980 .