On the Use of Neural Network as a Universal Approximator
暂无分享,去创建一个
[1] Pierre Borne. Les réseaux de neurones. , 2006 .
[2] M. Benrejeb,et al. Sur l’unicité de la réponse d’un réseau d’énergie électrique en régime de défauts , 2006 .
[3] Michel Verleysen,et al. Width optimization of the Gaussian kernels in Radial Basis Function Networks , 2002, ESANN.
[4] Peter Vas,et al. Artificial-Intelligence-Based Electrical Machines and Drives: Application of Fuzzy, Neural, Fuzzy-neural, and Genetic-Algorithm-based Techniques , 1999 .
[5] Mark J. L. Orr. Optimising the widths of radial basis functions , 1998, Proceedings 5th Brazilian Symposium on Neural Networks (Cat. No.98EX209).
[6] Jie Zhang,et al. A Sequential Learning Approach for Single Hidden Layer Neural Networks , 1998, Neural Networks.
[7] Sung Yang Bang,et al. An Efficient Method to Construct a Radial Basis Function Neural Network Classifier , 1997, Neural Networks.
[8] Panos J. Antsaklis,et al. The dependence identification neural network construction algorithm , 1996, IEEE Trans. Neural Networks.
[9] J. A. Leonard,et al. Radial basis function networks for classifying process faults , 1991, IEEE Control Systems.
[10] V. Kůrková. Kolmogorov's Theorem Is Relevant , 1991, Neural Comput..
[11] Tomaso A. Poggio,et al. Representation Properties of Networks: Kolmogorov's Theorem Is Irrelevant , 1989, Neural Computation.
[12] Kurt Hornik,et al. Multilayer feedforward networks are universal approximators , 1989, Neural Networks.
[13] Ken-ichi Funahashi,et al. On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.
[14] Christian Lebiere,et al. The Cascade-Correlation Learning Architecture , 1989, NIPS.
[15] G. Watson. Approximation theory and numerical methods , 1980 .