Arbitrary order edge elements for electromagnetic scattering simulations using hybrid meshes and a PML

The use of arbitrary order edge elements for the simulation of two-dimensional electromagnetic scattering problems on hybrid meshes of triangles and quadrilaterals is described. Single-frequency incident waves, generated by a source in the far field, are considered and the solution is determined in the frequency domain. For numerical simulation, the solution domain is truncated at a finite distance from the perfectly conducting scatterer and the non-reflecting boundary condition at the truncated boundary is imposed by the use of a perfectly matched layer (PML). Several examples are included to demonstrate the performance of the proposed procedure. Copyright © 2002 John Wiley & Sons, Ltd.

[1]  L. Nicolas,et al.  Modeling unbounded wave propagation problems in terms of transverse fields using 2D mixed finite elements , 1995 .

[2]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[3]  Andrew F. Peterson,et al.  Absorbing boundary conditions for the vector wave equation , 1988 .

[4]  Mark Ainsworth,et al.  Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes , 2001 .

[5]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[6]  A. H. Sherman,et al.  Comparative Analysis of the Cuthill–McKee and the Reverse Cuthill–McKee Ordering Algorithms for Sparse Matrices , 1976 .

[7]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[8]  Jon P. Webb,et al.  Covariant-projection quadrilateral elements for the analysis of waveguides with sharp edges , 1991 .

[9]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[10]  R. J. Astley,et al.  Mapped spheroidal wave-envelope elements for unbounded wave problems , 1998 .

[11]  Nigel P. Weatherill,et al.  Parallel processing for the simulation of problems involving scattering of electromagnetic waves , 1998 .

[12]  L. Demkowicz,et al.  A two-dimensional infinite element for Maxwell's equations , 2000 .

[13]  Mattan Kamon,et al.  FASTHENRY: a multipole-accelerated 3-D inductance extraction program , 1994 .

[14]  L. Demkowicz,et al.  Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .

[15]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[16]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[17]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[18]  Peter Monk,et al.  An analysis of Ne´de´lec's method for the spatial discretization of Maxwell's equations , 1993 .

[19]  J. D. Collins,et al.  A finite-element-boundary-integral method for scattering and radiation by two- and three-dimensional structures , 1991, IEEE Antennas and Propagation Magazine.

[20]  H. Kardestuncer,et al.  Finite element handbook , 1987 .

[21]  Jaime Peraire,et al.  A time domain unstructured grid approach to the simulation of electromagnetic scattering in piecewise homogeneous media , 1996 .

[22]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[23]  Eric Darve,et al.  Advanced structured unstructured solver for electromagnetic scattering from multimaterial objects , 1997 .

[24]  Peter Monk,et al.  On the p- and hp-extension of Nédélec's curl-conforming elements , 1994 .

[25]  Raj Mittra,et al.  Investigation of nonplanar perfectly matched absorbers for finite-element mesh truncation , 1997 .

[26]  J. P. Webb,et al.  Hierarchal Scalar and vector Tetrahedra , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.