Maximum entropy approach to the identification of stochastic reduced-order models of nonlinear dynamical systems

Data-driven methodologies based on the restoring force method have been developed over the past few decades for building predictive reduced-order models (ROMs) of nonlinear dynamical systems. These methodologies involve fitting a polynomial expansion of the restoring force in the dominant state variables to observed states of the system. ROMs obtained in this way are usually prone to errors and uncertainties due to the approximate nature of the polynomial expansion and experimental limitations. We develop in this article a stochastic methodology that endows these errors and uncertainties with a probabilistic structure in order to obtain a quantitative description of the proximity between the ROM and the system that it purports to represent. Specifically, we propose an entropy maximization procedure for constructing a multi-variate probability distribution for the coefficients of power-series expansions of restoring forces. An illustration in stochastic aeroelastic stability analysis is provided to demonstrate the proposed framework.

[1]  Christian Soize,et al.  Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices , 2008 .

[2]  G. Schuëller A state-of-the-art report on computational stochastic mechanics , 1997 .

[3]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[4]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[5]  Christian Soize,et al.  Experimental validation of a nonparametric probabilistic model of nonhomogeneous uncertainties for dynamical systems. , 2004, The Journal of the Acoustical Society of America.

[6]  C. S. Manohar,et al.  Progress in structural dynamics with stochastic parameter variations: 1987-1998 , 1999 .

[7]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[8]  Sami F. Masri,et al.  Development of data-based model-free representation of non-conservative dissipative systems , 2007 .

[9]  Paul Van Dooren,et al.  Model reduction of state space systems via an implicitly restarted Lanczos method , 1996, Numerical Algorithms.

[10]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[11]  R. Ibrahim Structural Dynamics with Parameter Uncertainties , 1987 .

[12]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[13]  Juan J. Alonso,et al.  Airfoil design optimization using reduced order models based on proper orthogonal decomposition , 2000 .

[14]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[15]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[16]  Andrew W. Smyth,et al.  A General Data-Based Approach for Developing Reduced-Order Models of Nonlinear MDOF Systems , 2005 .

[17]  S. A. Marshall,et al.  Design of multivariable control systems using reduced-order models , 1975 .

[18]  Chris L. Pettit,et al.  Nonlinear plate aeroelastic response with uncertain stiffness and boundary conditions , 2006 .

[19]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .

[20]  Sami F. Masri,et al.  Identification of nonlinear vibrating structures: Part I -- Formulation , 1987 .

[21]  Roger G. Ghanem,et al.  Identification of Bayesian posteriors for coefficients of chaos expansions , 2010, J. Comput. Phys..

[22]  C Soize,et al.  Maximum entropy approach for modeling random uncertainties in transient elastodynamics. , 2001, The Journal of the Acoustical Society of America.

[23]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[24]  Christian Soize,et al.  Reduced models in the medium frequency range for general dissipative structural-dynamics systems , 1998, European Journal of Mechanics - A/Solids.

[25]  Muhammad R. Hajj,et al.  Higher-Order Spectral Analysis of Limit Cycle Oscillations of Fighter Aircraft , 2008 .

[26]  A. Sarkar,et al.  Mid-frequency structural dynamics with parameter uncertainty , 2001 .

[27]  Sami F. Masri,et al.  Stochastic change detection in uncertain nonlinear systems using reduced-order models: classification , 2008 .

[28]  G. I. Schuëller,et al.  Computational stochastic mechanics – recent advances , 2001 .

[29]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[30]  Sami F. Masri,et al.  A Nonparametric Identification Technique for Nonlinear Dynamic Problems , 1979 .

[31]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[32]  Geert Degrande,et al.  A non-parametric probabilistic model for ground-borne vibrations in buildings , 2006 .

[33]  Sami F. Masri,et al.  Identification and prediction of stochastic dynamical systems in a polynomial chaos basis , 2005 .