Centromere and kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and chemotherapy

Chromosomal instability (CIN) is a hallmark of cancer that contributes to tumour heterogeneity and other malignant properties. Aberrant centromere and kinetochore function causes CIN through chromosome missegregation, leading to aneuploidy, rearrangements and micronucleus formation. Here we develop a Centromere and kinetochore gene Expression Score (CES) signature that quantifies the centromere and kinetochore gene misexpression in cancers. High CES values correlate with increased levels of genomic instability and several specific adverse tumour properties, and prognosticate poor patient survival for breast and lung cancers, especially early-stage tumours. They also signify high levels of genomic instability that sensitize cancer cells to additional genotoxicity. Thus, the CES signature forecasts patient response to adjuvant chemotherapy or radiotherapy. Our results demonstrate the prognostic and predictive power of the CES, suggest a role for centromere misregulation in cancer progression, and support the idea that tumours with extremely high CIN are less tolerant to specific genotoxic therapies.

[1]  Gary H Karpen,et al.  Conserved organization of centromeric chromatin in flies and humans. , 2002, Developmental cell.

[2]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[3]  Nicolai J. Birkbak,et al.  Extreme chromosomal instability forecasts improved outcome in ER-negative breast cancer: a prospective validation cohort study from the TACT trial. , 2015, Annals of oncology : official journal of the European Society for Medical Oncology.

[4]  Z. Szallasi,et al.  A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers , 2006, Nature Genetics.

[5]  A. Desai,et al.  KNL1 and the CENP-H/I/K complex coordinately direct kinetochore assembly in vertebrates. , 2007, Molecular biology of the cell.

[6]  Igor Jurisica,et al.  Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  Neil J Ganem,et al.  DNA breaks and chromosome pulverization from errors in mitosis , 2012, Nature.

[8]  Gary H. Karpen,et al.  Genome-wide analysis reveals a cell cycle–dependent mechanism controlling centromere propagation , 2008, The Journal of cell biology.

[9]  A. Amon,et al.  New insights into the troubles of aneuploidy. , 2012, Annual review of cell and developmental biology.

[10]  Euan A Ashley,et al.  The precision medicine initiative: a new national effort. , 2015, JAMA.

[11]  Wilfried Gouraud,et al.  bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses , 2013, Database J. Biol. Databases Curation.

[12]  Howard Y. Chang,et al.  Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. J. Mendiburo,et al.  Drosophila CENH3 Is Sufficient for Centromere Formation , 2011, Science.

[14]  T. Halazonetis,et al.  Genomic instability — an evolving hallmark of cancer , 2010, Nature Reviews Molecular Cell Biology.

[15]  M. Speicher,et al.  Defining 'chromosomal instability'. , 2008, Trends in genetics : TIG.

[16]  N. Hanna,et al.  Vinorelbine Plus Cisplatin vs Observation in Resected Non–Small-Cell Lung Cancer , 2006 .

[17]  Milind B. Suraokar,et al.  A 12-Gene Set Predicts Survival Benefits from Adjuvant Chemotherapy in Non–Small Cell Lung Cancer Patients , 2013, Clinical Cancer Research.

[18]  A. Venkitaraman Cancer Suppression by the Chromosome Custodians, BRCA1 and BRCA2 , 2014, Science.

[19]  Geert J. P. L. Kops,et al.  On the road to cancer: aneuploidy and the mitotic checkpoint , 2005, Nature Reviews Cancer.

[20]  G. Karpen,et al.  Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. , 2006, Developmental cell.

[21]  I. Monypenny,et al.  Patterns and predictors of early recurrence in postmenopausal women with estrogen receptor-positive early breast cancer , 2009, Breast Cancer Research and Treatment.

[22]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[23]  Yusuke Nakamura,et al.  HJURP Is a Cell-Cycle-Dependent Maintenance and Deposition Factor of CENP-A at Centromeres , 2009, Cell.

[24]  David C. Jones,et al.  Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.

[25]  Steven J. M. Jones,et al.  Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer , 2015, Cell.

[26]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .

[27]  G. Collins The next generation. , 2006, Scientific American.

[28]  Weidong Wang,et al.  A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. , 2010, Molecular cell.

[29]  Tetsuya Hori,et al.  The CENP-H–I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres , 2006, Nature Cell Biology.

[30]  R. Baker,et al.  Misregulation of Scm3p/HJURP Causes Chromosome Instability in Saccharomyces cerevisiae and Human Cells , 2011, PLoS genetics.

[31]  Alan Ashworth,et al.  BRCAness revisited , 2016, Nature Reviews Cancer.

[32]  Yuan Qi,et al.  Multifactorial approach to predicting resistance to anthracyclines. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[33]  Samantha G. Zeitlin,et al.  Double-strand DNA breaks recruit the centromeric histone CENP-A , 2009, Proceedings of the National Academy of Sciences.

[34]  Yusuke Nakamura,et al.  Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. , 2007, Cancer research.

[35]  Cristina Montagna,et al.  Aneuploidy acts both oncogenically and as a tumor suppressor. , 2007, Cancer cell.

[36]  Matthew Meyerson,et al.  CHROMOTHRIPSIS FROM DNA DAMAGE IN MICRONUCLEI , 2015, Nature.

[37]  M. Roizen,et al.  Hallmarks of Cancer: The Next Generation , 2012 .

[38]  G. Karpen,et al.  The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions , 2001, Nature Cell Biology.

[39]  Derek Y. Chiang,et al.  The landscape of somatic copy-number alteration across human cancers , 2010, Nature.

[40]  Karen E Gascoigne,et al.  CENP-T-W-S-X Forms a Unique Centromeric Chromatin Structure with a Histone-like Fold , 2012, Cell.

[41]  Jason M. Sheltzer,et al.  The aneuploidy paradox: costs and benefits of an incorrect karyotype. , 2011, Trends in genetics : TIG.

[42]  W. Earnshaw,et al.  Role of the centromere/kinetochore in cell cycle control. , 1991, Cold Spring Harbor symposia on quantitative biology.

[43]  W. Earnshaw Discovering centromere proteins: from cold white hands to the A, B, C of CENPs , 2015, Nature Reviews Molecular Cell Biology.

[44]  R. Medema,et al.  Chromosome Segregation Errors as a Cause of DNA Damage and Structural Chromosome Aberrations , 2011, Science.

[45]  Bruce F. McEwen,et al.  CCAN Makes Multiple Contacts with Centromeric DNA to Provide Distinct Pathways to the Outer Kinetochore , 2008, Cell.

[46]  J. Brenton,et al.  Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. , 2007, Cancer cell.

[47]  Michael L. Creech,et al.  Integration of biological networks and gene expression data using Cytoscape , 2007, Nature Protocols.

[48]  G. Bell,et al.  Kinetochore genes are coordinately up-regulated in human tumors as part of a FoxM1-related cell division program , 2014, Molecular biology of the cell.

[49]  Osamu Iwasaki,et al.  Mis16 and Mis18 Are Required for CENP-A Loading and Histone Deacetylation at Centromeres , 2004, Cell.

[50]  John R. Yates,et al.  The human CENP-A centromeric nucleosome-associated complex , 2006, Nature Cell Biology.

[51]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[52]  S. Ramaswamy,et al.  Systematic identification of genomic markers of drug sensitivity in cancer cells , 2012, Nature.

[53]  M. Campone,et al.  bc-GenExMiner: an easy-to-use online platform for gene prognostic analyses in breast cancer , 2012, Breast Cancer Research and Treatment.

[54]  C. J. Fuller,et al.  CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly , 2011, The Journal of cell biology.

[55]  Benjamin Haibe-Kains,et al.  DNA methylation profiling reveals a predominant immune component in breast cancers , 2011, EMBO molecular medicine.

[56]  I. Kirsch,et al.  Targeting Cancer Cells by Exploiting Karyotypic Complexity and Chromosomal Instability , 2005, Cell cycle.

[57]  S. Nelson,et al.  Targeted Therapy Resistance Mediated by Dynamic Regulation of Extrachromosomal Mutant EGFR DNA , 2014, Science.

[58]  S. Henikoff,et al.  Heterochromatic deposition of centromeric histone H3-like proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Nicolai J. Birkbak,et al.  Chromosomal instability confers intrinsic multidrug resistance. , 2011, Cancer research.

[60]  Yusuke Toyoda,et al.  Priming of Centromere for CENP-A Recruitment by Human hMis18α, hMis18β, and M18BP1 , 2007 .

[61]  Yusuke Toyoda,et al.  Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. , 2007, Developmental cell.

[62]  B. Weaver,et al.  Does aneuploidy cause cancer? , 2006, Current opinion in cell biology.

[63]  B. E. Black,et al.  Centromere identity, function, and epigenetic propagation across cell divisions. , 2010, Cold Spring Harbor symposia on quantitative biology.

[64]  R. Plá-Mestre,et al.  An opportunity for improvement with a medication reconciliation programme , 2013 .

[65]  G. Karpen,et al.  Epigenetic regulation of centromeric chromatin: old dogs, new tricks? , 2008, Nature Reviews Genetics.

[66]  Z. Szallasi,et al.  An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients , 2010, Breast Cancer Research and Treatment.

[67]  J. Gray,et al.  The expression level of HJURP has an independent prognostic impact and predicts the sensitivity to radiotherapy in breast cancer , 2010, Breast Cancer Research.

[68]  R. DePinho,et al.  Telomeres and telomerase in cancer. , 2010, Carcinogenesis.

[69]  J. Yates,et al.  Centromere-Specific Assembly of CENP-A Nucleosomes Is Mediated by HJURP , 2009, Cell.

[70]  A. Desai,et al.  Molecular architecture of the kinetochore–microtubule interface , 2008, Nature Reviews Molecular Cell Biology.

[71]  G. Pihan,et al.  Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. , 2003, Cancer research.

[72]  Yuan Qi,et al.  Centromere protein-A, an essential centromere protein, is a prognostic marker for relapse in estrogen receptor-positive breast cancer , 2011, Breast Cancer Research.

[73]  Ajay N. Jain,et al.  Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. , 2006, Cancer cell.

[74]  B. E. Black,et al.  HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore , 2011, The Journal of cell biology.

[75]  Z. Szallasi,et al.  Spatial and temporal diversity in genomic instability processes defines lung cancer evolution , 2014, Science.

[76]  Y. Ichinose,et al.  Prognostic value of the histological subtype in completely resected non-small cell lung cancer. , 2006, Interactive cardiovascular and thoracic surgery.

[77]  Angelika Amon,et al.  Aneuploidy Affects Proliferation and Spontaneous Immortalization in Mammalian Cells , 2008, Science.

[78]  G. Almouzni,et al.  Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX. , 2014, Molecular cell.

[79]  Marketa Zvelebil,et al.  ROCK: a resource for integrative breast cancer data analysis , 2013, Breast Cancer Research and Treatment.

[80]  Charles Swanton,et al.  Spatial and temporal cancer evolution: causes and consequences of tumour diversity. , 2014, Clinical medicine.

[81]  N. McGranahan,et al.  The causes and consequences of genetic heterogeneity in cancer evolution , 2013, Nature.

[82]  Brian Reid,et al.  Overdiagnosis and overtreatment in cancer: an opportunity for improvement. , 2013, JAMA.