In Situ Scanning Tunneling Microscopy Observation of Metal–Cluster Redox Interconversion and CO Dissociation Reactions at a Solution/Au(111) Interface

We present here an in situ scanning tunneling microscopy (STM) study of potential-induced reactions of oxo-centered acetato-bridged triruthenium clusters on Au(111) under electrochemical conditions...

[1]  N. Ogawa,et al.  Conductance Hysteresis and Switching in a Single-Molecule Junction , 2008 .

[2]  K. Uosaki,et al.  Effects of Electrolytes on the Redox Potential and the Rate of the CO Dissociation Reaction of Trinuclear Ruthenium Monocarbonyl Complexes Self-Assembled on an Au(111) Electrode Surface , 2007 .

[3]  K. Fukui,et al.  Origin of Current Enhancement through a Ferrocenylundecanethiol Island Embedded in Alkanethiol SAMs by Using Electrochemical Potential Control , 2007 .

[4]  M. Kawai,et al.  Hierarchical chiral framework based on a rigid adamantane tripod on Au(111). , 2007, Journal of the American Chemical Society.

[5]  K. Itaya,et al.  Molecular assemblies and redox reactions of zinc(II) tetraphenylporphyrin and zinc(II) phthalocyanine on Au(1 1 1) single crystal surface at electrochemical interface , 2005 .

[6]  C. Kubiak,et al.  Vibronic Participation of the Bridging Ligand in Electron Transfer and Delocalization: New Application of a Three-State Model in Pyrazine-Bridged Mixed-Valence Complexes of Trinuclear Ruthenium Clusters , 2003 .

[7]  R. Madix,et al.  Imaging Surface Reactions at Atomic Resolution: A Wealth of Behavior on the Nanoscale , 2003 .

[8]  K. W. Hipps,et al.  Scanning tunneling microscopy, orbital-mediated tunneling spectroscopy, and ultraviolet photoelectron spectroscopy of metal(II) tetraphenylporphyrins deposited from vapor. , 2001, Journal of the American Chemical Society.

[9]  I. Taniguchi,et al.  Direct Observation of Structural Change Induced by Redox Reaction of Bis(2-anthraquinyl) Disulfide Self-Assembled Monolayer on Au(100)−(1 × 1) by in Situ High-Resolution Scanning Tunneling Microscopy , 2000 .

[10]  B. Ohtani,et al.  TWO-DIMENSIONAL CHIRALITY : SELF-ASSEMBLED MONOLAYER OF AN ATROPISOMERIC COMPOUND COVALENTLY BOUND TO A GOLD SURFACE , 1999 .

[11]  K. Uosaki,et al.  Formation of Two-Dimensional Crystals of Alkanes on the Au(111) Surface in Neat Liquid , 1999 .

[12]  Joachim,et al.  Nanoscale science of single molecules using local probes , 1999, Science.

[13]  Kingo Itaya,et al.  In situ scanning tunneling microscopy in electrolyte solutions , 1998 .

[14]  K. Uosaki,et al.  Electrochemical Layer-by-Layer Growth of Palladium on an Au(111) Electrode Surface: Evidence for Important Role of Adsorbed Pd Complex , 1998 .

[15]  K. Uosaki,et al.  In Situ Scanning Tunneling Microscopy Observation of the Self-Assembly Process of Alkanethiols on Gold(111) in Solution , 1998 .

[16]  Ertl,et al.  Atomic and macroscopic reaction rates of a surface-catalyzed reaction , 1997, Science.

[17]  K. Uosaki,et al.  In Situ, Real Time Monitoring of the Self-Assembly Process of Decanethiol on Au(111) in Liquid Phase. A Scanning Tunneling Microscopy Investigation , 1997 .

[18]  Tasuku Ito,et al.  Oxo-Centered Mixed-Ligand Triruthenium Complexes Having Redox-Active N-Methyl-4,4‘-bipyridinium Ions (mbpy+). Reversible Multistep Electrochemical Properties of [RuIII2RuII(μ3-O)(μ-CH3CO2)6(mbpy+)2(CO)]2+ and [RuIII3(μ3-O)(μ-CH3CO2)6(mbpy+)2(L)]3+ (L = H2O and N-Heterocyclic Ligands) , 1996 .

[19]  K. Uosaki,et al.  In-situ FT-IR Spectroelectrochemical Study of the Trinuclear Complex [Ru3(.mu.3-O)(.mu.-CH3COO)6(CO)(pyridine)2] in Acetonitrile , 1995 .

[20]  M. Abe,et al.  Ligand-ligand redox interaction through some metal-cluster units. , 2004, Chemical record.

[21]  K. Uosaki,et al.  A ligand substitution reaction of oxo-centred triruthenium complexes assembled as monolayers on gold electrodes , 2001 .