Robustness of trajectories with finite time extent

The problem of estimating perturbation bounds of finite trajectories is considered. The trajectory is assumed to be generated by a linear system with uncertainty characterized in terms of integral quadratic constraints. It is shown that such perturbation bounds can be obtained as the solution to a nonconvex quadratic optimization problem, which can be addressed using Lagrange relaxation. The result can be used in robustness analysis of hybrid systems and switched dynamical systems.

[1]  I. Petersen,et al.  Robust state estimation for uncertain systems with averaged integral quadratic constraints , 1996 .

[2]  V. Yakubovich Dichotomy and absolute stability of nonlinear systems with periodically nonstationary linear part , 1988 .

[3]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[4]  C. Lemaréchal Nondifferentiable optimization , 1989 .

[5]  Michael S. Branicky,et al.  Studies in hybrid systems: modeling, analysis, and control , 1996 .

[6]  Ian R. Petersen,et al.  An uncertainty averaging approach to optimal guaranteed cost control of uncertain systems with structured uncertainty , 1995, Autom..

[7]  L. Tavernini Differential automata and their discrete simulators , 1987 .

[8]  John Lygeros,et al.  Controllers for reachability specifications for hybrid systems , 1999, Autom..

[9]  A. Megretski,et al.  Power Distribution Approach in Robust Control , 1993 .

[10]  Ian R. Petersen,et al.  Model validation for robust control of uncertain systems with an integral quadratic constraint , 1996, Autom..

[11]  Pravin Varaiya,et al.  Ellipsoidal Techniques for Reachability Analysis , 2000, HSCC.

[12]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[13]  Alexandre Megretski,et al.  A cutting plane algorithm for robustness analysis of periodically time-varying systems , 2001, IEEE Trans. Autom. Control..

[14]  Stavros Tripakis,et al.  Verification of Hybrid Systems with Linear Differential Inclusions Using Ellipsoidal Approximations , 2000, HSCC.

[15]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[16]  V. Yakubovich,et al.  Nonconvex Problems of Global Optimization: Linear-Quadratic Control Problems with Quadratic Constraints , 1997 .

[17]  Karl Johan Åström,et al.  A Stabilizing Switching Scheme for Multi Controller Systems , 1996 .

[18]  D. Sorensen Newton's method with a model trust region modification , 1982 .

[19]  R. Murray,et al.  Numerically Efficient Robustness Analysis of Trajectory Tracking for Nonlinear Systems , 1997 .

[20]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[21]  V. Yakubovich Necessity in quadratic criterion for absolute stability , 2000 .