Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by 5-Ammonium Valeric Acid Iodide Revealed by Multi-Nuclear and Two-Dimensional Solid-State NMR.

Chemical doping of inorganic-organic hybrid perovskites is an effective way of improving the performance and operational stability of perovskite solar cells (PSCs). Here we use 5-ammonium valeric acid (AVAI) to chemically stabilize the structure of α-FAPbI3. Using solid-state MAS NMR, we demonstrate the atomic-level interaction between the molecular modulator and the perovskite lattice and propose a structural model of the stabilized three-dimensional structure, further aided by density functional theory (DFT) calculations. We find that one-step deposition of the perovskite in the presence of AVAI produces highly crystalline films with large, micrometer-sized grains and enhanced charge-carrier lifetimes, as probed by transient absorption spectroscopy. As a result, we achieve greatly enhanced solar cell performance for the optimized AVA-based devices with a maxi-mum power conversion efficiency (PCE) of 18.94%. The devices retain 90% of the initial efficiency after 300 h under continuous white light illumination and maximum-power point-tracking measurement.

[1]  Ayan A. Zhumekenov,et al.  Quantum Dots Supply Bulk- and Surface-Passivation Agents for Efficient and Stable Perovskite Solar Cells , 2019, Joule.

[2]  A. Kentgens,et al.  Solid-state NMR of hybrid halide perovskites. , 2019, Solid state nuclear magnetic resonance.

[3]  Y. Li,et al.  Supramolecular Engineering for Formamidinium‐Based Layered 2D Perovskite Solar Cells: Structural Complexity and Dynamics Revealed by Solid‐State NMR Spectroscopy , 2019, Advanced Energy Materials.

[4]  J. Vela,et al.  Synthesis and mixing of complex halide perovskites by solvent-free solid-state methods , 2019, Journal of Solid State Chemistry.

[5]  M. Grätzel,et al.  Europium-Doped CsPbI2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells , 2019, Joule.

[6]  T. Noda,et al.  Coadditive Engineering with 5-Ammonium Valeric Acid Iodide for Efficient and Stable Sn Perovskite Solar Cells , 2019, ACS Energy Letters.

[7]  A. Amassian,et al.  High performance ambient-air-stable FAPbI3 perovskite solar cells with molecule-passivated Ruddlesden–Popper/3D heterostructured film , 2018 .

[8]  M. Grätzel,et al.  Addition of adamantylammonium iodide to hole transport layers enables highly efficient and electroluminescent perovskite solar cells , 2018 .

[9]  Michael Grätzel,et al.  Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability , 2018, Nature Communications.

[10]  E. Ravera,et al.  Cu(II)-Doped Cs2SbAgCl6 Double Perovskite: A Lead-Free, Low-Bandgap Material , 2018, Chemistry of Materials.

[11]  A. Kentgens,et al.  Dimethylammonium Incorporation in Lead Acetate Based MAPbI3 Perovskite Solar Cells. , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[13]  S. Zakeeruddin,et al.  One-step mechanochemical incorporation of an insoluble cesium additive for high performance planar heterojunction solar cells , 2018, Nano Energy.

[14]  Wei Lin Leong,et al.  Efficient and Ambient‐Air‐Stable Solar Cell with Highly Oriented 2D@3D Perovskites , 2018, Advanced Functional Materials.

[15]  M. Grätzel,et al.  Phase Segregation in Potassium-Doped Lead Halide Perovskites from 39K Solid-State NMR at 21.1 T. , 2018, Journal of the American Chemical Society.

[16]  G. Bernard,et al.  Composition-Tunable Formamidinium Lead Mixed Halide Perovskites via Solvent-Free Mechanochemical Synthesis: Decoding the Pb Environments Using Solid-State NMR Spectroscopy. , 2018, The journal of physical chemistry letters.

[17]  M. Kanatzidis,et al.  Phase Transition Control for High Performance Ruddlesden–Popper Perovskite Solar Cells , 2018, Advanced materials.

[18]  N. Park,et al.  Methodologies toward Highly Efficient Perovskite Solar Cells. , 2018, Small.

[19]  M. Kanatzidis,et al.  Unraveling the Chemical Nature of the 3D "Hollow" Hybrid Halide Perovskites. , 2018, Journal of the American Chemical Society.

[20]  Peng Chen,et al.  In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells , 2018 .

[21]  N. Park,et al.  Simultaneous Improvement of Photovoltaic Performance and Stability by In Situ Formation of 2D Perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN Interface , 2018 .

[22]  G. Bernard,et al.  Mechanochemical Synthesis of Methylammonium Lead Mixed–Halide Perovskites: Unraveling the Solid-Solution Behavior Using Solid-State NMR , 2018 .

[23]  Miaoqiang Lyu,et al.  Progress and Perspective in Low-Dimensional Metal Halide Perovskites for Optoelectronic Applications , 2018 .

[24]  Yue Hu,et al.  Improved Performance of Printable Perovskite Solar Cells with Bifunctional Conjugated Organic Molecule , 2018, Advanced materials.

[25]  S. Zakeeruddin,et al.  Formation of Stable Mixed Guanidinium-Methylammonium Phases with Exceptionally Long Carrier Lifetimes for High-Efficiency Lead Iodide-Based Perovskite Photovoltaics. , 2018, Journal of the American Chemical Society.

[26]  Chih-Jen Shih,et al.  Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability , 2018, ACS energy letters.

[27]  A. Emwas,et al.  Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. , 2018, Journal of the American Chemical Society.

[28]  M. Kanatzidis,et al.  Universal Dynamics of Molecular Reorientation in Hybrid Lead Iodide Perovskites. , 2017, Journal of the American Chemical Society.

[29]  A. Pasquarello,et al.  Predictive Determination of Band Gaps of Inorganic Halide Perovskites. , 2017, The journal of physical chemistry letters.

[30]  He Lin,et al.  Dimensional Engineering of a Graded 3D–2D Halide Perovskite Interface Enables Ultrahigh Voc Enhanced Stability in the p‐i‐n Photovoltaics , 2017 .

[31]  M. Grätzel,et al.  Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA)x(FA)1–xPbI3 Hybrid Perovskites from Solid-State NMR , 2017, Journal of the American Chemical Society.

[32]  Yixin Zhao,et al.  A facile deposition of large grain and phase pure α-FAPbI3 for perovskite solar cells via a flash crystallization , 2017 .

[33]  S. Xiao,et al.  Tailoring the Performances of Lead Halide Perovskite Devices with Electron‐Beam Irradiation , 2017, Advanced materials.

[34]  M. Wasielewski,et al.  Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3 , 2017, Science Advances.

[35]  M. Grätzel,et al.  Cation Dynamics in Mixed-Cation (MA)x(FA)1-xPbI3 Hybrid Perovskites from Solid-State NMR. , 2017, Journal of the American Chemical Society.

[36]  R. Hamers,et al.  Stabilization of the Metastable Lead Iodide Perovskite Phase via Surface Functionalization. , 2017, Nano letters.

[37]  King-Fu Lin,et al.  Amino-Acid-Induced Preferential Orientation of Perovskite Crystals for Enhancing Interfacial Charge Transfer and Photovoltaic Performance. , 2017, Small.

[38]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[39]  Y. Kanemitsu Luminescence spectroscopy of lead-halide perovskites: materials properties and application as photovoltaic devices , 2017 .

[40]  Q. Gong,et al.  High-Performance Formamidinium-Based Perovskite Solar Cells via Microstructure-Mediated δ-to-α Phase Transformation , 2017 .

[41]  Z. Tian,et al.  In Situ Fabrication of Highly Luminescent Bifunctional Amino Acid Crosslinked 2D/3D NH3C4H9COO(CH3NH3PbBr3)n Perovskite Films , 2017 .

[42]  J. Even,et al.  Multinuclear NMR as a tool for studying local order and dynamics in CH3NH3PbX3 (X = Cl, Br, I) hybrid perovskites. , 2016, Physical chemistry chemical physics : PCCP.

[43]  J. Vela,et al.  Persistent Dopants and Phase Segregation in Organolead Mixed-Halide Perovskites , 2016, Chemistry of Materials.

[44]  D. J. Clark,et al.  Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors , 2016 .

[45]  A. Jen,et al.  Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells , 2016 .

[46]  Cesare Soci,et al.  Perovskite Solar Cells , 2016 .

[47]  Fan Li,et al.  A general fabrication procedure for efficient and stable planar perovskite solar cells: Morphological and interfacial control by in-situ-generated layered perovskite , 2015 .

[48]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[49]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[50]  Omar K Farha,et al.  2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. , 2015, Journal of the American Chemical Society.

[51]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[52]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[53]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[54]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[55]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[56]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[57]  Paolo Umari,et al.  Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications , 2014, Scientific Reports.

[58]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[59]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[60]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[61]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[62]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[63]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[64]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[65]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[66]  L. Emsley,et al.  Molecular structure determination in powders by NMR crystallography from proton spin diffusion. , 2006, Journal of the American Chemical Society.

[67]  N. Mercier (HO2C(CH2)3NH3)2(CH3NH3)Pb2I7: a predicted non-centrosymmetrical structure built up from carboxylic acid supramolecular synthons and bilayer perovskite sheets , 2005 .

[68]  B. Twamley,et al.  Polytypism in columnar group 14 halide salts: structures of (Et2NH2)3Pb3X9 x nH2O (X = Cl, Br) and (beta-alaninium)2SnI4. , 2002, Inorganic chemistry.

[69]  R. Griffin,et al.  Molecular Dynamics and Magic Angle Spinning NMR , 1994 .

[70]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .