An improved adaptive B-spline active contour model

This paper presents an adaptive B-spline active contour algorithm based on the active contour model, which makes the active contour approach the real image edge as close as possible. Combining the principles of the optimal edge detection filter, our active B-spline contour model improves the energy function, which speeds up the search procedure of the edge in an image and widens the automatic search scope.

[1]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[2]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Rachid Deriche,et al.  Recursive Filtering and Edge Closing: two primary tools for 3-D edge detection , 1990, ECCV.

[4]  Kim L. Boyer,et al.  On Optimal Infinite Impulse Response Edge Detection Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  L. Cohen NOTE On Active Contour Models and Balloons , 1991 .

[6]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Rae-Hong Park,et al.  Multiresolution edge detection techniques , 1995, Pattern Recognit..

[8]  Zhaohui Huang,et al.  Affine-invariant B-spline moments for curve matching , 1996, IEEE Trans. Image Process..

[9]  Rachid Deriche,et al.  3D edge detection using recursive filtering: Application to scanner images , 1991, CVGIP Image Underst..

[10]  Mubarak Shah,et al.  A Fast algorithm for active contours and curvature estimation , 1992, CVGIP Image Underst..