Properties of the thundercloud discharges responsible for terrestrial gamma‐ray flashes

[1] The source of terrestrial gamma-ray flashes (TGFs) has been an active area of research since their discovery by Compton Gamma-Ray Observatory/Burst and Transient Source Experiment in 1994. These intense bursts of gamma rays originate within thunderclouds via the rapid production of relativistic runaway electrons, accelerated by thundercloud/lightning electric fields to multi-MeV energies. Recent studies have shown that electrical discharges within thunderclouds caused by these runaway electrons can generate currents that rival those of lightning and so could serve as an alternative discharge path for thunderclouds. In particular, the discharges responsible for TGFs produce some of the largest amplitude VLF-LF radio pulses from thunderstorms and, indeed, were previously misidentified as lightning. In this article, we shall provide a brief review of TGFs and present calculations of their electrical properties inside thunderclouds and their gamma-ray and optical emissions. We shall show that the lightning-like events responsible for TGFs emit relatively little visible light and, thus, are inherently dark.

[1]  P. N. Bhat,et al.  First results on terrestrial gamma ray flashes from the Fermi Gamma‐ray Burst Monitor , 2010 .

[2]  C. Eyles,et al.  A new method reveals more TGFs in the RHESSI data , 2012 .

[3]  S. Cummer,et al.  Measurements and implications of the relationship between lightning and terrestrial gamma ray flashes , 2005 .

[4]  P. N. Bhat,et al.  Terrestrial gamma‐ray flashes in the Fermi era: Improved observations and analysis methods , 2013 .

[5]  N. Østgaard,et al.  Effects of dead time losses on terrestrial gamma ray flash measurements with the Burst and Transient Source Experiment , 2010 .

[6]  Yukihiro Takahashi,et al.  Lightning flashes conducive to the production and escape of gamma radiation to space , 2006 .

[7]  J. Dwyer The relativistic feedback discharge model of terrestrial gamma ray flashes , 2012 .

[8]  Impact of varying atmospheric profiles on extensive air shower observation: Fluorescence light emission and energy reconstruction , 2005, astro-ph/0511153.

[9]  S. Cummer,et al.  Characteristics of broadband lightning emissions associated with terrestrial gamma ray flashes , 2011 .

[10]  Sanborn C. Brown,et al.  Introduction to Electrical Discharges in Gases , 1968 .

[11]  Aleksandr V. Gurevich,et al.  Runaway breakdown and electric discharges in thunderstorms , 2001 .

[12]  Umran S. Inan,et al.  Terrestrial gamma ray flashes observed aboard the Compton Gamma Ray Observatory/Burst and Transient Source Experiment and ELF/VLF radio atmospherics , 2006 .

[13]  Richard J. Blakeslee,et al.  Diffusion model for lightning radiative transfer , 1994 .

[14]  V. Pasko,et al.  Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events , 2011 .

[15]  U. Inan,et al.  Geolocation of terrestrial gamma‐ray flash source lightning , 2010 .

[16]  Georgios Veronis,et al.  Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders , 2006 .

[17]  U. Inan,et al.  Constraints on terrestrial gamma ray flash production from satellite observation , 2007 .

[18]  U. Inan,et al.  Terrestrial gamma ray flash production by active lightning leader channels , 2010 .

[19]  P. N. Bhat,et al.  Temporal properties of the terrestrial gamma‐ray flashes from the Gamma‐Ray Burst Monitor on the Fermi Observatory , 2011 .

[20]  R. Roussel-Dupre,et al.  The feedback mechanism of runaway air breakdown , 2005 .

[21]  G. Piano,et al.  Detection of terrestrial gamma ray flashes up to 40 MeV by the AGILE satellite , 2010 .

[22]  Wei Xu,et al.  Source altitudes of terrestrial gamma‐ray flashes produced by lightning leaders , 2012 .

[23]  Leonid P. Babich,et al.  Low‐energy electron production by relativistic runaway electron avalanches in air , 2011 .

[24]  J. Dwyer,et al.  Estimation of the fluence of high-energy electron bursts produced by thunderclouds and the resulting radiation doses received in aircraft , 2010 .

[25]  Steven A. Cummer,et al.  High-Energy Atmospheric Physics: Terrestrial Gamma-Ray Flashes and Related Phenomena , 2012, Space Science Reviews.

[26]  Vladimir A. Rakov,et al.  Measurements of x‐ray emission from rocket‐triggered lightning , 2004 .

[27]  Lou‐Chuang Lee,et al.  Comparison of results from sprite streamer modeling with spectrophotometric measurements by ISUAL instrument on FORMOSAT‐2 satellite , 2006 .

[28]  Martin A. Uman,et al.  Spatial and energy distributions of X-ray emissions from leaders in natural and rocket triggered lightning , 2012 .

[29]  Gerald J. Fishman,et al.  The lightning‐TGF relationship on microsecond timescales , 2011 .

[30]  J. Dwyer Relativistic breakdown in planetary atmospheres , 2007 .

[31]  J. Dwyer Diffusion of relativistic runaway electrons and implications for lightning initiation , 2010 .

[32]  R. Roussel-Dupre,et al.  Fundamental parameters of a relativistic runaway electron avalanche in air , 2004 .

[33]  P. N. Bhat,et al.  Radio signals from electron beams in terrestrial gamma ray flashes , 2013 .

[34]  L. Babich,et al.  Calculation of a gigantic upward atmospheric discharge, accompanying optical phenomena, and penetrating radiations. I. Numerical model , 2008 .

[35]  E. Symbalisty,et al.  Physical Processes Related to Discharges in Planetary Atmospheres , 2008 .

[36]  A. Regan,et al.  A link between terrestrial gamma‐ray flashes and intracloud lightning discharges , 2005 .

[37]  J. Dwyer,et al.  Radio emissions from terrestrial gamma‐ray flashes , 2013 .

[38]  L. Babich,et al.  Analysis of terrestrial γ ray flashes correlated with small variations in the dipole moment of a thunderstorm cloud , 2008 .

[39]  Yu. V. Medvedev,et al.  Runaway breakdown in strong electric field as a source of terrestrial gamma flashes and gamma bursts in lightning leader steps , 2007 .

[40]  P. N. Bhat,et al.  Associations between Fermi Gamma‐ray Burst Monitor terrestrial gamma ray flashes and sferics from the World Wide Lightning Location Network , 2010 .

[41]  L. Babich,et al.  Calculation of a gigantic upward atmospheric discharge, accompanying optical phenomena, and penetrating radiations. II. Numerical simulation results , 2008 .

[42]  J. Dwyer,et al.  Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges , 2013 .

[43]  C. Kouveliotou,et al.  Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin , 1994, Science.

[44]  F Longo,et al.  Terrestrial gamma-ray flashes as powerful particle accelerators. , 2011, Physical review letters.

[45]  Steven A. Cummer,et al.  Simultaneous observations of optical lightning and terrestrial gamma ray flash from space , 2013 .

[46]  M. Uman,et al.  The Lightning Discharge , 1987 .

[47]  L. Babich,et al.  Analysis of atmospheric gamma-ray flashes detected in near space with allowance for the transport of photons in the atmosphere , 2008 .

[48]  J. Dwyer,et al.  Source mechanisms of terrestrial gamma‐ray flashes , 2008 .

[49]  J. Dolbeau,et al.  Absolute measurement of the nitrogen fluorescence yield in air between 300 and 430 nm , 2007, 0704.1532.

[50]  C. T. R. Wilson,et al.  The Acceleration of β-particles in Strong Electric Fields such as those of Thunderclouds , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[51]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[52]  Vladimir A. Rakov,et al.  Energetic Radiation Produced During Rocket-Triggered Lightning , 2003, Science.

[53]  V. Pasko,et al.  Terrestrial gamma ray flashes with energies up to 100 MeV produced by nonequilibrium acceleration of electrons in lightning , 2012 .

[54]  Umran S. Inan,et al.  Monte Carlo simulation of runaway MeV electron breakdown with application to red sprites and terrestrial gamma ray flashes , 1999 .

[55]  A. Gurevich,et al.  ON THE THEORY OF RUNAWAY ELECTRONS , 1960 .

[56]  R. P. Lin,et al.  Terrestrial Gamma-Ray Flashes Observed up to 20 MeV , 2005, Science.

[57]  G. M. Milikh,et al.  Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm , 1992 .

[58]  J. Dwyer,et al.  A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma‐ray flash observations , 2005 .

[59]  L. Babich,et al.  Deterministic methods for numerical simulation of high-energy runaway electron avalanches , 2011 .

[60]  Umran S. Inan,et al.  Terrestrial gamma ray flash production by lightning current pulses , 2009 .

[61]  Martin A. Uman,et al.  Properties of the X-ray emission from rocket-triggered lightning as measured by the Thunderstorm Energetic Radiation Array (TERA) , 2009 .

[62]  L. A. Antonelli,et al.  Gamma-ray localization of terrestrial gamma-ray flashes. , 2010, Physical review letters.

[63]  Jason R. Dwyer,et al.  Implications of x‐ray emission from lightning , 2004 .

[64]  R. Roussel-Dupre,et al.  Finite volume solution of the relativistic Boltzmann equation for electron avalanche studies , 1998 .

[65]  J. Dwyer,et al.  Propagation speed of runaway electron avalanches , 2006 .

[66]  N. Østgaard,et al.  The true fluence distribution of terrestrial gamma flashes at satellite altitude , 2012 .

[67]  Joseph R. Dwyer,et al.  A fundamental limit on electric fields in air , 2003 .

[68]  H. Christian,et al.  Lightning mapping observation of a terrestrial gamma‐ray flash , 2010 .

[69]  B. Hazelton,et al.  First RHESSI terrestrial gamma ray flash catalog , 2009 .

[70]  Ningyu Liu,et al.  Effects of photoionization on propagation and branching of positive and negative streamers in sprites , 2004 .

[71]  Umran S. Inan,et al.  Terrestrial gamma ray flashes and lightning discharges , 2006 .

[72]  Barbara Scherllin-Pirscher,et al.  A new dynamic approach for statistical optimization of GNSS radio occultation bending angles for optimal climate monitoring utility , 2013 .

[73]  V. Pasko,et al.  Soft collisions in relativistic runaway electron avalanches , 2010 .

[74]  William Rison,et al.  Energetic radiation associated with lightning stepped‐leaders , 2001 .

[75]  Lou‐Chuang Lee,et al.  Assessment of sprite initiating electric fields and quenching altitude of a1Πg state of N2 using sprite streamer modeling and ISUAL spectrophotometric measurements , 2009 .

[76]  D. Smith,et al.  A closer examination of terrestrial gamma‐ray flash‐related lightning processes , 2010 .

[77]  Victor P. Pasko,et al.  Production of very high potential differences by intracloud lightning discharges in connection with terrestrial gamma ray flashes , 2013 .

[78]  Umran S. Inan,et al.  On the association of terrestrial gamma‐ray bursts with lightning and implications for sprites , 1996 .