Pseudorandomness for Regular Branching Programs via Fourier Analysis

We present an explicit pseudorandom generator for oblivious, read-once, permutation branching programs of constant width that can read their input bits in any order. The seed length is O(log2 n), where n is the length of the branching program. The previous best seed length known for this model was n 1/2 + o(1), which follows as a special case of a generator due to Impagliazzo, Meka, and Zuckerman (FOCS 2012) (which gives a seed length of s 1/2 + o(1) for arbitrary branching programs of size s). Our techniques also give seed length n 1/2 + o(1) for general oblivious, read-once branching programs of width \(2^{n^{o(1)}}\), which is incomparable to the results of Impagliazzo et al.

[1]  Michael E. Saks,et al.  Efficient construction of a small hitting set for combinatorial rectangles in high dimension , 1993, Comb..

[2]  Thomas Steinke Pseudorandomness for Permutation Branching Programs Without the Group Theory , 2012, Electron. Colloquium Comput. Complex..

[3]  Moni Naor,et al.  Small-bias probability spaces: efficient constructions and applications , 1990, STOC '90.

[4]  Y. Tzur,et al.  Notions of Weak Pseudorandomness and GF (2 n )-Polynomials , 2009 .

[5]  Avi Wigderson,et al.  Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing , 1992, Symposium on the Theory of Computing.

[6]  Michael E. Saks,et al.  Discrepancy sets and pseudorandom generators for combinatorial rectangles , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[7]  Oded Goldreich,et al.  Efficient approximation of product distributions , 1998 .

[8]  Periklis A. Papakonstantinou,et al.  Pseudorandomness for Read-Once Formulas , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[9]  Luca Trevisan,et al.  Pseudorandom walks on regular digraphs and the RL vs. L problem , 2006, STOC '06.

[10]  Chi-Jen Lu Improved Pseudorandom Generators for Combinatorial Rectangles , 2002, Comb..

[11]  D. Sivakumar Algorithmic derandomization via complexity theory , 2002, STOC '02.

[12]  Omer Reingold,et al.  Undirected connectivity in log-space , 2008, JACM.

[13]  Zeev Dvir,et al.  Pseudorandomness for Width-2 Branching Programs , 2013, Theory Comput..

[14]  Ran Raz,et al.  Pseudorandom Generators for Regular Branching Programs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[15]  Salil P. Vadhan,et al.  Derandomized Squaring of Graphs , 2005, APPROX-RANDOM.

[16]  Omer Reingold,et al.  On the Power of the Randomized Iterate , 2006, SIAM J. Comput..

[17]  Noam Nisan,et al.  Pseudorandomness for network algorithms , 1994, STOC '94.

[18]  Piotr Indyk,et al.  Stable distributions, pseudorandom generators, embeddings, and data stream computation , 2006, JACM.

[19]  Noam Nisan,et al.  RL⊆SC , 1992, STOC '92.

[20]  Chi-Jen Lu,et al.  Improved Pseudorandom Generators for Combinatorial Rectangles , 1998, Comb..

[21]  Pavel Pudlák,et al.  Pseudorandom Generators for Group Products , 2010, Electron. Colloquium Comput. Complex..

[22]  Russell Impagliazzo,et al.  Pseudorandomness from Shrinkage , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[23]  Pavel Pudlák,et al.  Pseudorandom generators for group products: extended abstract , 2011, STOC '11.

[24]  Michael Saks,et al.  BP H SPACE(S)⊆DSPACE(S 3/2 ) , 1999, FOCS 1999.

[25]  Noga Alon,et al.  Simple construction of almost k-wise independent random variables , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[26]  Jon Kleinberg,et al.  Proceedings of the thirty-eighth annual ACM symposium on Theory of computing , 2006, STOC 2006.

[27]  Moni Naor,et al.  Derandomized Constructions of k-Wise (Almost) Independent Permutations , 2005, Algorithmica.

[28]  Ran Raz,et al.  On recycling the randomness of states in space bounded computation , 1999, STOC '99.

[29]  Stanislav Zák,et al.  A Sufficient Condition for Sets Hitting the Class of Read-Once Branching Programs of Width 3 - (Extended Abstract) , 2012, SOFSEM.

[30]  Joshua Brody,et al.  The Coin Problem and Pseudorandomness for Branching Programs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[31]  Sergey Yekhanin,et al.  Towards 3-query locally decodable codes of subexponential length , 2008, JACM.

[32]  Omer Reingold,et al.  Balls and Bins: Smaller Hash Families and Faster Evaluation , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[33]  M. Panella Associate Editor of the Journal of Computer and System Sciences , 2014 .

[34]  Anindya De,et al.  Pseudorandomness for Permutation and Regular Branching Programs , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[35]  Noam Nisan,et al.  More deterministic simulation in logspace , 1993, STOC.

[36]  Luca Trevisan,et al.  Better Pseudorandom Generators from Milder Pseudorandom Restrictions , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[37]  Emanuele Viola,et al.  Using nondeterminism to amplify hardness , 2004, STOC '04.

[38]  Aravind Srinivasan,et al.  Chernoff-Hoeffding bounds for applications with limited independence , 1995, SODA '93.