Effects of higher order moments on the newsvendor problem

In this paper, we propose a stochastic programming model for the well-known single-period newsvendor problem by adopting the conditional Value-at-Risk (CVaR) as the risk metric in the objective function. The demand uncertainty is modeled in terms of discrete scenarios that reflect the empirical distributions implied by market demand data. Our numerical results demonstrate that the higher order moments (skewness and kurtosis) of demand have obvious effects on the newsvendor problem, and the stochastic programming framework provides a flexible and effective decision support tool for the newsvendor problem.

[1]  Xiao-hong Chen,et al.  Optimal ordering quantities for multi-products with stochastic demand: Return-CVaR model , 2008 .

[2]  Oded Berman,et al.  Mean-variance analysis and the single-period inventory problem , 1986 .

[3]  Michal Kaut,et al.  A heuristic for generating scenario trees for multistage decision problems , 2001 .

[4]  T. Choi,et al.  Mean-downside-risk and mean-variance newsvendor models: Implications for sustainable fashion retailing , 2012 .

[5]  Julian V. Noble,et al.  The full Monte , 2002, Comput. Sci. Eng..

[6]  Zhe George Zhang,et al.  Technical Note - A Risk-Averse Newsvendor Model Under the CVaR Criterion , 2009, Oper. Res..

[7]  Houmin Yan,et al.  Coordination of Supply Chains with Risk-Averse Agents , 2009 .

[8]  Abhijit Gosavi,et al.  The multi-product price-setting newsvendor with resource capacity constraints , 2012 .

[9]  K. Taaffe,et al.  Risk averse demand selection with all-or-nothing orders , 2009 .

[10]  Stein W. Wallace,et al.  Generating Scenario Trees for Multistage Decision Problems , 2001, Manag. Sci..

[11]  Jun-ya Gotoh,et al.  Newsvendor solutions via conditional value-at-risk minimization , 2007, Eur. J. Oper. Res..

[12]  József Váncza,et al.  Channel coordination with the newsvendor model using asymmetric information , 2012 .

[13]  Stanislav Uryasev,et al.  Conditional Value-at-Risk for General Loss Distributions , 2002 .

[14]  Michal Kaut,et al.  A Heuristic for Moment-Matching Scenario Generation , 2003, Comput. Optim. Appl..

[15]  Charles S. Tapiero,et al.  Value at risk and inventory control , 2005, Eur. J. Oper. Res..

[16]  Peter Kischka,et al.  Risk preferences of a newsvendor with service and loss constraints , 2013 .

[17]  Hon-Shiang Lau The Newsboy Problem under Alternative Optimization Objectives , 1980 .

[18]  S. Zenios,et al.  CVaR models with selective hedging for international asset allocation , 2002 .

[19]  Hercules Vladimirou,et al.  A dynamic stochastic programming model for international portfolio management , 2008, Eur. J. Oper. Res..

[20]  S. Zenios,et al.  Pricing options on scenario trees , 2008 .

[21]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[22]  Fikri Karaesmen,et al.  Multi-product newsvendor problem with value-at-risk considerations , 2009 .

[23]  Hongyi Li,et al.  Accounting for the impact of higher order moments in foreign equity option pricing model , 2011 .

[24]  S. Webster,et al.  The Loss-Averse Newsvendor Problem , 2009 .

[25]  Maria Grazia Speranza,et al.  On the effectiveness of scenario generation techniques in single-period portfolio optimization , 2009, Eur. J. Oper. Res..

[26]  T. Cheng,et al.  Mean – variance analysis of the newsvendormodel with stockout cost , 2009 .

[27]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[28]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[29]  Houmin Yan,et al.  Channel coordination in supply chains with agents having mean-variance objectives , 2008 .