Bandwidth Analysis of Multiport Radio Frequency Systems—Part I

When multiple radio frequency sources are connected to multiple loads through a passive multiport matching network, perfect power transfer to the loads across all frequencies is generally impossible. In this two-part paper, we provide analyses of bandwidth over which power transfer is possible. Our principal tools include broadband multiport matching upper bounds, presented herein, on the integral over all frequency of the logarithm of a suitably defined power loss ratio. In general, the larger the integral, the larger the bandwidth over which power transfer can be accomplished. We apply these bounds in several ways. We show how the number of sources and loads, and the coupling between loads, affect achievable bandwidth. We analyze the bandwidth of networks constrained to have certain architectures. We characterize systems whose bandwidths scale as the ratio between the numbers of loads and sources. The first part of this paper presents the bounds and uses them to analyze loads whose frequency responses can be represented by analytical circuit models. The second part analyzes the bandwidth of realistic loads whose frequency responses are available numerically. We provide applications to wireless transmitters where the loads are antennas being driven by amplifiers. The derivations of the bounds are also included.

[1]  Gabriel M. Rebeiz,et al.  Cochlea-Based RF Channelizing Filters , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  M. Gustafsson,et al.  Physical limitations on antennas of arbitrary shape , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  R. Stephan,et al.  Miniaturized antenna arrays using decoupling networks with realistic elements , 2006, IEEE Transactions on Microwave Theory and Techniques.

[4]  Wai-Kai Chen,et al.  Broad-band matching of multiport networks , 1984 .

[5]  Michael A. Jensen,et al.  Mutual coupling in MIMO wireless systems: a rigorous network theory analysis , 2004, IEEE Transactions on Wireless Communications.

[6]  D. Youla,et al.  A New Theory of Broad-band Matching , 1964 .

[7]  A. Krewski,et al.  N-port DL-MIMO antenna system realization using systematically designed Mode Matching and Mode Decomposition Network , 2012, 2012 42nd European Microwave Conference.

[8]  Jennifer T. Bernhard,et al.  Broadband Equivalent Circuit Models for Antenna Impedances and Fields Using Characteristic Modes , 2013, IEEE Transactions on Antennas and Propagation.

[9]  S. Darlington,et al.  Synthesis of Reactance 4-Poles Which Produce Prescribed Insertion Loss Characteristics: Including Special Applications To Filter Design , 1939 .

[10]  P.I. Richards,et al.  Resistor-Transmission-Line Circuits , 1948, Proceedings of the IRE.

[11]  D. Pozar Microwave Engineering , 1990 .

[12]  Jeffery C. Allen,et al.  Optimal Lossy Matching by Pareto Fronts , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[13]  B. Gustavsen,et al.  Fast Passivity Enforcement for S-Parameter Models by Perturbation of Residue Matrix Eigenvalues , 2010, IEEE Transactions on Advanced Packaging.

[14]  A. S. Morris,et al.  A New Method for Matching Network Adaptive Control , 2013, IEEE Transactions on Microwave Theory and Techniques.

[15]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .

[16]  Brian L. Hughes,et al.  Bandwidth Limitations and Broadband Matching for Coupled Multi-Antenna Systems , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[17]  Herbert J. Carlin,et al.  On the Synthesis of Reactance 4‐Poles , 1953 .

[18]  Reza Mahmoudi,et al.  Adaptive Impedance-Matching Techniques for Controlling L Networks , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Roberto G. Rojas,et al.  Non-Foster impedance matching of electrically small antennas , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[20]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[21]  Robert J. Mailloux,et al.  Phased Array Antenna Handbook , 1993 .

[22]  P. Garcia,et al.  An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system , 2004, IEEE Transactions on Microwave Theory and Techniques.

[23]  Ding Nie,et al.  Systematic Design of Large-Scale Multiport Decoupling Networks , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  Ding Nie,et al.  Broadband Matching Bounds for Coupled Loads , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[25]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[26]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[27]  V. Belevitch,et al.  Classical network theory , 1968 .

[28]  Robert W. Newcomb,et al.  Linear multiport synthesis , 1966 .

[29]  D. Arceo,et al.  Wideband Multiport Matching Phase I: Single-Feed Multiport Antennas , 2008 .

[30]  A. Semlyen,et al.  Rational approximation of frequency domain responses by vector fitting , 1999 .

[31]  Mats Gustafsson,et al.  Multichannel broadband Fano theory for arbitrary lossless antennas with applications in DOA estimation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[32]  J. William Helton,et al.  Classical control using H[∞] methods , 1998 .

[33]  M. Gustafsson,et al.  Illustrations of New Physical Bounds on Linearly Polarized Antennas , 2009, IEEE Transactions on Antennas and Propagation.

[34]  S. Lang Complex Analysis , 1977 .

[35]  Mats Gustafsson,et al.  A priori estimates on the partial realized gain of ultra-wideband (UWB) antennas , 2008 .

[36]  R. Fano Theoretical limitations on the broadband matching of arbitrary impedances , 1950 .

[37]  A. Semlyen,et al.  Fast Passivity Assessment for $S$-Parameter Rational Models Via a Half-Size Test Matrix , 2008, IEEE Transactions on Microwave Theory and Techniques.

[38]  J.J. Shea,et al.  Practical RF circuit design for modern wireless systems, vol. I [Book Review] , 2004, IEEE Electrical Insulation Magazine.

[39]  T. Dhaene,et al.  Macromodeling of Multiport Systems Using a Fast Implementation of the Vector Fitting Method , 2008, IEEE Microwave and Wireless Components Letters.

[40]  J.T. Aberle,et al.  Two-Port Representation of an Antenna With Application to Non-Foster Matching Networks , 2008, IEEE Transactions on Antennas and Propagation.

[41]  Buon Kiong Lau,et al.  Impact of Matching Network on Bandwidth of Compact Antenna Arrays , 2006, IEEE Transactions on Antennas and Propagation.

[42]  P. G. Spain,et al.  Tracking poles, representing Hankel operators, and the Nehari problem , 1995 .

[43]  R. Douglas,et al.  The precise theoretical limits of causal Darlington synthesis , 1973 .

[44]  Ding Nie,et al.  Bandwidth Analysis of Multiport Radio-Frequency Systems—Part II , 2017, IEEE Transactions on Antennas and Propagation.

[45]  R. Newcomb,et al.  On the n-Port Brune Resistance Extraction , 1963 .

[46]  Brian L. Hughes,et al.  Diversity Limits of Compact Broadband Multi-Antenna Systems , 2012, IEEE Journal on Selected Areas in Communications.

[47]  M. Ronald Wohlers Lumped and Distributed Passive Networks: A Generalized and Advanced Viewpoint , 2013 .

[48]  B. Gustavsen,et al.  Improving the pole relocating properties of vector fitting , 2006, 2006 IEEE Power Engineering Society General Meeting.

[49]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[50]  H. Carlin A new approach to gain-bandwidth problems , 1977 .

[51]  P. G. Spain,et al.  Tracking poles and representing Hankel operators directly from data , 1990 .

[52]  Robert W. Heath,et al.  Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems , 2014, IEEE Journal of Selected Topics in Signal Processing.

[53]  John S. Thompson,et al.  Adaptive Uncoupled Termination for Coupled Arrays in MIMO Systems , 2013, IEEE Transactions on Antennas and Propagation.