A superlative indicator for the Luenberger-Hicks-Moorsteen productivity indicator: Theory and application

Consisting of the difference between an output indicator and an input indicator, the Luenberger-Hicks-Moorsteen (LHM) productivity indicator allows straightforward interpretation. However, its computation requires estimating distance functions that are inherently unknown. This paper shows that a computationally simple Bennet indicator is a superlative indicator for the LHM indicator when one can assume profit-maximizing behavior and the input and output directional distance functions can be represented up to the second order by a quadratic functional form. We also show that the Luenberger- and LHM-approximating Bennet indicators coincide for an appropriate choice of directional vectors. Focusing on a large sample of Italian food and beverages companies for the years 1995−2007, we empirically investigate the extent to which this theoretical equivalence translates into similar estimates. We find that the Bennet indicator is a close empirical alternative to the LHM indicator for the sample.

[1]  Kristiaan Kerstens,et al.  Technology-Based Total Factor Productivity and Benchmarking: New Proposals and an Application , 2011 .

[2]  Kristiaan Kerstens,et al.  Infeasibility and Directional Distance Functions with Application to the Determinateness of the Luenberger Productivity Indicator , 2009 .

[3]  Hideyuki Mizobuchi A superlative index number formula for the Hicks-Moorsteen productivity index , 2017 .

[4]  Qi Li,et al.  A nonparametric test for equality of distributions with mixed categorical and continuous data , 2009 .

[5]  Gary D. Ferrier,et al.  Agricultural productivity evolution in China: A generalized decomposition of the Luenberger-Hicks-Moorsteen productivity indicator , 2019, China Economic Review.

[6]  William L. Weber,et al.  Characteristics of a Polluting Technology: Theory and Practice , 2002 .

[7]  Chiang Kao,et al.  Network data envelopment analysis: A review , 2014, Eur. J. Oper. Res..

[8]  S. Kumbhakar,et al.  Management in production: from unobserved to observed , 2014 .

[9]  Bruno Merlevede,et al.  Multinational Networks, Domestic,and Foreign Firms in Europe , 2015 .

[10]  Jean-Paul Chavas,et al.  Applied Production Analysis: A Dual Approach , 1988 .

[11]  S. Grosskopf,et al.  On Separability of the Profit Function , 2000 .

[12]  Kristiaan Kerstens,et al.  Bank Productivity and Performance Groups: A Decomposition Approach Based Upon the Luenberger Productivity Indicator , 2011, Eur. J. Oper. Res..

[13]  Robert G. Chambers,et al.  A New Look at Exact Input, Output, Productivity, and Technical Change Measurement , 1996 .

[14]  Rafael Caballero,et al.  Measuring the wastewater treatment plants productivity change: Comparison of the Luenberger and Luenberger-Hicks-Moorsteen Productivity Indicators , 2019, Journal of Cleaner Production.

[15]  R. Färe,et al.  On Luenberger input, output and productivity indicators , 2019, Economics Letters.

[16]  W. Diewert Fisher ideal output, input, and productivity indexes revisited , 1992 .

[17]  B. Balk,et al.  Industrial Price, Quantity, and Productivity Indices: The Micro-Economic Theory and an Application , 1998 .

[18]  K. Kerstens,et al.  Comparing Luenberger and Luenberger-Hicks-Moorsteen productivity indicators: How well is total factor productivity approximated? , 2018 .

[19]  A. Lansink,et al.  Decomposing dynamic profit inefficiency of Belgian dairy farms , 2018 .

[20]  Thomas L. Cox,et al.  Prices and Quality Effects in Cross-Sectional Demand Analysis , 1986 .

[21]  H. Varian The Nonparametric Approach to Production Analysis , 1984 .

[22]  Subal C. Kumbhakar,et al.  Productivity with General Indices of Management and Technical Change , 2013 .

[23]  Pieter Jan Kerstens,et al.  Decomposing the Luenberger-Hicks-Moorsteen Total Factor Productivity indicator: An application to U.S. agriculture , 2017, Eur. J. Oper. Res..

[24]  Spiro E. Stefanou,et al.  Nonparametric Dynamic Production Analysis and the Theory of Cost , 2003 .

[25]  Kristiaan Kerstens,et al.  A Luenberger-Hicks-Moorsteen productivity indicator: its relation to the Hicks-Moorsteen productivity index and the Luenberger productivity indicator , 2004 .

[26]  Amir Arjomandi,et al.  Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen productivity indicator , 2017 .

[27]  L. R. Christensen,et al.  THE ECONOMIC THEORY OF INDEX NUMBERS AND THE MEASUREMENT OF INPUT, OUTPUT, AND PRODUCTIVITY , 1982 .

[28]  W. Briec,et al.  The Hicks–Moorsteen Productivity Index Satisfies the Determinateness Axiom , 2011 .

[29]  Hans Bjurek The Malmquist Total Factor Productivity Index , 1996 .

[30]  Frederic Ang,et al.  Exact and Superlative Measurement of the Luenberger-Hicks-Moorsteen Productivity Indicator , 2017 .

[31]  Kevin J. Fox,et al.  Decomposing productivity indexes into explanatory factors , 2017, Eur. J. Oper. Res..

[32]  Rolf Färe,et al.  On functional form representation of multi-output production technologies , 2010 .

[33]  R. Chambers Exact nonradial input, output, and productivity measurement , 2002 .

[34]  Kevin J. Fox,et al.  Malmquist and Törnqvist productivity indexes: returns to scale and technical progress with imperfect competition , 2010 .

[35]  Walter Diewert,et al.  Exact and superlative index numbers , 1976 .

[36]  Derivative Properties of Directional Technology Distance Functions , 2007 .

[37]  Emili Grifell-Tatjé,et al.  Profits and Productivity , 1999 .

[38]  Frederic Ang Analyzing Components of Productivity Growth Using the Bennet‐Lowe Indicator: An Application to Welsh Sheep Farms , 2019, American Journal of Agricultural Economics.

[39]  R. Färe,et al.  A note on parameterizing input distance functions: does the choice of a functional form matter? , 2016 .

[40]  Laurens Cherchye,et al.  Production with Storable and Durable Inputs: Nonparametric Analysis of Intertemporal Efficiency , 2016, Eur. J. Oper. Res..

[41]  R. Färe,et al.  Generalized Quadratic Revenue Functions , 2008 .

[42]  C. Lovell Recent Developments in Productivity Analysis , 2016 .

[43]  M. Molinos-Senante,et al.  Assessing productivity changes in water companies: a comparison of the Luenberger and Luenberger-Hicks-Moorsteen productivity indicators , 2018, Urban Water Journal.

[44]  Marijn Verschelde,et al.  Semiparametric stochastic metafrontier efficiency of European manufacturing firms , 2016 .

[45]  C. O'Donnell An aggregate quantity framework for measuring and decomposing productivity change , 2012 .

[46]  S. Grosskopf,et al.  PRODUCTIVITY GROWTH IN APEC COUNTRIES , 1996 .

[47]  Rolf Färe,et al.  The theory of economic price and quantity indicators , 2003 .