Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy

Abstract In this paper we investigate the asymptotic behavior of the nonlinear Cahn–Hilliard equation with a logarithmic free energy and similar singular free energies. We prove an existence and uniqueness result with the help of monotone operator methods, which differs from the known proofs based on approximation by smooth potentials. Moreover, we apply the Lojasiewicz–Simon inequality to show that each solution converges to a steady state as time tends to infinity.

[1]  Charles M. Elliott,et al.  `A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy' , 1991 .

[2]  R. Chill,et al.  Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions , 2003 .

[3]  Charles M. Elliott,et al.  On the Cahn-Hilliard equation , 1986 .

[4]  Ralph Chill,et al.  On the Łojasiewicz–Simon gradient inequality , 2003 .

[5]  Hugo Ribeiro,et al.  Notas de Matemática , 1949 .

[6]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[7]  Jan Prüss,et al.  Maximal regularity and asymptotic behavior of solutions for the Cahn–Hilliard equation with dynamic boundary conditions , 2006 .

[8]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[9]  Piotr Rybka,et al.  Convergence of solutions to cahn-hilliard equation , 1999 .

[10]  Hao-qing Wu,et al.  Convergence to Equilibrium for the Cahn-Hilliard Equation with Wentzell Boundary Condition , 2004, 0705.3362.

[11]  N. Kenmochi,et al.  Subdifferential Operator Approach to the Cahn-Hilliard Equation with Constraint , 1995 .

[12]  A. Bonfoh A fourth-order parabolic equation with a logarithmic nonlinearlity , 2004 .

[13]  Jan Prüss,et al.  Convergence to steady states of solutions of the Cahn–Hilliard and Caginalp equations with dynamic boundary conditions , 2006 .

[14]  H. Garcke On a Cahn-Hilliard model for phase separation with elastic misfit , 2005 .

[15]  Yoshikazu Giga,et al.  Analyticity of the semigroup generated by the Stokes operator inLr spaces , 1981 .

[16]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[17]  Arnaud Debussche,et al.  On the Cahn-Hilliard equation with a logarithmic free energy , 1995 .

[18]  H. Dym,et al.  Operator theory: Advances and applications , 1991 .

[19]  Sergey Zelik,et al.  Robust exponential attractors for Cahn‐Hilliard type equations with singular potentials , 2004 .

[20]  A. Visintin Models of Phase Transitions , 1996 .

[21]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[22]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .