Models for Shape Memory Alloy Behavior: An overview of modeling approaches

Shape memory alloys (SMA) have been known for over five decades and modeling of their response has attracted much attention over the last two decades. Recent increase in the range of applications of these materials has lead to an increased focus on modeling their thermomechanical response. Various approaches ranging from macroscopic phenomenology to microscopic lattice based methods are being pursued to model SMA behavior. Models ranging from simple tools as design aids to complex thermodynamic based models to understand the characteristic martensitic transformation responsible for the shape memory and superelastic response exist. In this report, following a brief introduction to the SMA behavior and the underlying martensitic transformation, an overview of models for SMAs is provided. This is aimed at providing an understanding of the state of the art and also to identify possible future directions. In this review, models are classified both on the basis of the approach and the level (scale) of continuum they address. General methodology of each type of approach is presented briefly followed by a review of the models that fall under that category. Certain liberties are taken in classifying these models to facilitate understanding and thus the present classification is by no means either unique or completely rigorous. Also, while an attempt is made to cover most of the approaches, review of all the models that exist in literature is practically impossible. Finally, summarizing the literature on models for SMAs, several interesting and relevant problems are identified for possible future developments.

[1]  R. Abeyaratne,et al.  A Helmholtz free-energy function for a Cu–Al–Ni shape memory alloy , 2005 .

[2]  E. Sacco,et al.  A temperature-dependent beam for shape-memory alloys: Constitutive modelling, finite-element implementation and numerical simulations , 1999 .

[3]  K. Hwang,et al.  A micromechanics constitutive model of transformation plasticity with shear and dilatation effect , 1991 .

[4]  A. Heckmann,et al.  Structural and functional fatigue of NiTi shape memory alloys , 2004 .

[5]  Miinshiou Huang,et al.  A Multivariant model for single crystal shape memory alloy behavior , 1998 .

[6]  L. Brinson,et al.  A Simplified Multivariant SMA Model Based on Invariant Plane Nature of Martensitic Transformation , 2002 .

[7]  Stefan Seelecke,et al.  Thermodynamic aspects of shape memory alloys , 2001 .

[8]  Keh Chih Hwang,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. II: Study of the individual phenomena , 1993 .

[9]  J. Shaw,et al.  The Effect of Uniaxial Cyclic Deformation on the Evolution of Phase Transformation Fronts in Pseudoelastic NiTi Wire , 2001, Adaptive Structures and Material Systems.

[10]  Dennis R. Preston,et al.  Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory , 2003 .

[11]  T Prakash G. Thamburaja,et al.  Martensitic reorientation and shape-memory effect in initially textured polycrystalline Ti–Ni sheet , 2005 .

[12]  James G. Boyd,et al.  Thermomechanical Response of Shape Memory Composites , 1993, Smart Structures.

[13]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[14]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[15]  M. Achenbach,et al.  SIMULATION OF MATERIAL BEHAVIOR OF ALLOYS WITH SHAPE MEMORY , 1985 .

[16]  Dimitris C. Lagoudas,et al.  A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite , 2007 .

[17]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[18]  K. M. Liew,et al.  Numerical simulation of thermomechanical behaviours of shape memory alloys via a non‐linear mesh‐free Galerkin formulation , 2005 .

[19]  Dean L. Preston,et al.  Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite↔martensite , 2002 .

[20]  K. Ramaiah,et al.  Understanding the Fatigue Behaviour of NiTiCu Shape Memory Alloy Wire Thermal Actuators , 2008 .

[21]  Jong-Ha Chung,et al.  Implementation strategy for the dual transformation region in the Brinson SMA constitutive model , 2007 .

[22]  L. Brinson,et al.  Temperature-induced phase transformation in a shape memory alloy: Phase diagram based kinetics approach , 1997 .

[23]  Sanjay Govindjee,et al.  Computational aspects of one-dimensional shape memory alloy modeling with phase diagrams* , 1999 .

[24]  M G Faulkner,et al.  Finite-element modeling of phase transformation in shape memory alloy wires with variable material properties , 2000 .

[25]  John A. Shaw,et al.  Thermodynamics of Shape Memory Alloy Wire: Modeling, Experiments, and Application , 2006 .

[26]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[27]  Tomoyuki Kakeshita,et al.  Science and Technology of Shape-Memory Alloys: New Developments , 2002 .

[28]  Carsten Carstensen,et al.  Compatibility conditions for microstructures and the austenite-martensite transition , 1999 .

[29]  Ingo Müller,et al.  Nonequilibrium thermodynamics of pseudoelasticity , 1993 .

[30]  Victor Birman,et al.  Review of Mechanics of Shape Memory Alloy Structures , 1997 .

[31]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[32]  Ferdinando Auricchio,et al.  Modelling of SMA materials: Training and two way memory effects , 2003 .

[33]  M. Achenbach A model for an alloy with shape memory , 1989 .

[34]  Ferdinando Auricchio,et al.  Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior , 1997 .

[35]  Yinong Liu,et al.  Effect of deformation by stress-induced martensitic transformation on the transformation behaviour of NiTi , 2000 .

[36]  Marcelo A. Savi,et al.  Phenomenological Modeling and Numerical Simulation of Shape Memory Alloys: A Thermo-Plastic-Phase Transformation Coupled Model , 2002 .

[37]  On the Formation and Propagation of Macroscopic Martensitic Front in Shape Memory Alloy Wire , 2001 .

[38]  Patrick Wollants,et al.  Thermally- and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics , 1993 .

[39]  D. Lagoudas,et al.  Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms , 2000 .

[40]  George J. Weng,et al.  Martensitic transformation and stress-strain relations of shape-memory alloys , 1997 .

[41]  S. Lele,et al.  Thermal arrest memory effect , 1994 .

[42]  James G. Boyd,et al.  A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material , 1996 .

[43]  A. Planes,et al.  Hysteresis in Shape-Memory Materials , 2005 .

[44]  G. Bourbon,et al.  The two way shape memory effect of shape memory alloys: an experimental study and a phenomenological model , 2000 .

[45]  Gn Dayananda,et al.  Recovery stress generation in shape memory Ti50Ni45Cu5 thin wires , 2000 .

[46]  Hsin-Chih Lin,et al.  The effects of cold rolling on the martensitic transformation of an equiatomic TiNi alloy , 1991 .

[47]  K. Tanaka A THERMOMECHANICAL SKETCH OF SHAPE MEMORY EFFECT: ONE-DIMENSIONAL TENSILE BEHAVIOR , 1986 .

[48]  W. Brantley,et al.  Temperature-modulated DSC study of phase transformations in nickel-titanium orthodontic wires , 2002 .

[49]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[50]  Yunzhi Wang,et al.  Three-dimensional field model and computer modeling of martensitic transformations , 1997 .

[51]  A. Khandelwal,et al.  Phenomenological Modeling of Shape Memory Alloys , 2008 .

[52]  E. N. Mamiya,et al.  Three-dimensional model for solids undergoing stress-induced phase transformations , 1998 .

[53]  James K. Knowles,et al.  A continuum model of a thermoelastic solid capable of undergoing phase transitions , 1993 .

[54]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II : material characterization and experimental results for a stable transformation cycle , 1999 .

[55]  F. Auricchio,et al.  A three‐dimensional model describing stress‐temperature induced solid phase transformations: solution algorithm and boundary value problems , 2004 .

[56]  F. Falk Model free energy, mechanics, and thermodynamics of shape memory alloys , 1980 .

[57]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[58]  C. Lexcellent,et al.  A general macroscopic description of the thermomechanical behavior of shape memory alloys , 1996 .

[59]  Scott R. White,et al.  Theoretical modelling of residual and transformational stresses in SMA composites , 1996 .

[60]  D. Bernardini On the macroscopic free energy functions for shape memory alloys , 2001 .

[61]  E. Patoor,et al.  Thermomechanical behaviour of shape memory alloys , 1988 .

[62]  C. Cho,et al.  A proposed phenomenological model for shape memory alloys , 2006 .

[63]  R. James Displacive phase transformations in solids , 1986 .

[64]  W Moussa,et al.  Effect of variable material properties and environmental conditions on thermomechanical phase transformations in shape memory alloy wires , 2003 .

[65]  S. Sivakumar,et al.  On smeared and micromechanical approaches to modeling martensitic transformations in SMA , 2008 .

[66]  Dirk Helm,et al.  Shape memory behaviour: modelling within continuum thermomechanics , 2003 .

[67]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[68]  M. Krishnan New observations on the thermal arrest memory effect in Ni–Ti alloys , 2005 .

[69]  Arun R. Srinivasa,et al.  Mechanics of the inelastic behavior of materials—part 1, theoretical underpinnings , 1998 .

[70]  Robert V. Kohn,et al.  Symmetry, texture and the recoverable strain of shape-memory polycrystals , 1996 .

[71]  Marcelo A. Savi,et al.  A three-dimensional constitutive model for shape memory alloys , 2010 .

[72]  Arun R. Srinivasa,et al.  On the thermomechanics of shape memory wires , 1999 .

[73]  L. Brinson,et al.  A three-dimensional phenomenological model for martensite reorientation in shape memory alloys , 2007 .

[74]  Marcelo A. Savi,et al.  An overview of constitutive models for shape memory alloys , 2006 .

[75]  Sanjay Govindjee,et al.  Application of a partially relaxed shape memory free energy function to estimate the phase diagram and predict global microstructure evolution , 2002 .

[76]  On the kinetics of an austenite → martensite phase transformation induced by impact in a CuAlNi shape-memory alloy , 1997 .

[77]  J. Perkins Residual stresses and the origin of reversible (two-way) shape memory effects , 1974 .

[78]  Vidyashankar R. Buravalla,et al.  Differential and integrated form consistency in 1-D phenomenological models for shape memory alloy constitutive behavior , 2007 .

[79]  W. A. Day The Thermodynamics of Materials with Memory , 2010 .

[80]  T Prakash G. Thamburaja,et al.  Polycrystalline shape-memory materials: effect of crystallographic texture , 2001 .

[81]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[82]  L. C. Brinson,et al.  Phase diagram based description of the hysteresis behavior of shape memory alloys , 1998 .

[83]  Jordi Ortín,et al.  Preisach modeling of hysteresis for a pseudoelastic Cu-Zn-Al single crystal , 1992 .

[84]  Hisashi Naito,et al.  Inner loops of pseudoelastic hysteresis of shape memory alloys: Preisach approach , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[85]  Christian Miehe,et al.  A multi-variant martensitic phase transformation model: formulation and numerical implementation , 2001 .

[86]  Zdeněk P. Bažant,et al.  Three-dimensional constitutive model for shape memory alloys based on microplane model , 2002 .

[87]  T. P. G. Thamburaja,et al.  Superelastic behavior in tension–torsion of an initially-textured Ti–Ni shape-memory alloy , 2002 .

[88]  J. Shaw A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities , 2002 .

[89]  Travis L. Turner,et al.  Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites , 2006 .

[90]  Arun R. Srinivasa,et al.  Thermomechanical modeling of hysteresis in SMAs using the dissipationless reference response , 2007 .

[91]  Ken Gall,et al.  The role of texture in tension–compression asymmetry in polycrystalline NiTi , 1999 .

[92]  Davide Bernardini,et al.  Shape‐Memory Materials, Modeling , 2002 .

[93]  Lallit Anand,et al.  Thermal effects in the superelasticity of crystalline shape-memory materials , 2003 .

[94]  Jordi Ortín,et al.  Hysteresis in shape-memory alloys , 2002 .

[95]  Davide Bernardini,et al.  Models for one-variant shape memory materials based on dissipation functions , 2002 .

[96]  Lorenza Petrini,et al.  A three‐dimensional model describing stress‐temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications , 2004 .

[97]  Morton E. Gurtin,et al.  Dynamic solid-solid transitions with phase characterized by an order parameter , 1994 .

[98]  Dean L. Preston,et al.  Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis , 2002 .

[99]  Qingping Sun,et al.  Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys. I: Derivation of general relations , 1993 .

[100]  Sanjay Govindjee,et al.  A computational model for shape memory alloys , 2000 .

[101]  S. Sivakumar,et al.  A two variant thermomechanical model for shape memory alloys , 1999 .

[102]  Ferdinando Auricchio,et al.  Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior , 1997 .

[103]  Ferdinando Auricchio,et al.  A uniaxial model for shape-memory alloys , 1997 .

[104]  C. Liang,et al.  A multi-dimensional constitutive model for shape memory alloys , 1992 .

[105]  D. Roy Mahapatra,et al.  Finite Element Analysis of Phase Transformation Dynamics in Shape Memory Alloys with a Consistent Landau-Ginzburg Free Energy Model , 2006 .

[106]  P. Kloucek,et al.  On the modeling and computations of nonlinear thermodynamics in SMA wires , 2006 .

[107]  Giuseppe Tomassetti,et al.  Thermodynamics of shape-memory alloys under electric current , 2010 .

[108]  Yuji Matsuzaki,et al.  Macroscopic and Microscopic Constitutive Models of Shape Memory Alloys Based on Phase Interaction Energy Function: A Review , 2004 .

[109]  Thomas J. Pence,et al.  A constitutive model for hysteretic phase transition behavior , 1994 .

[110]  C. Lexcellent,et al.  Micromechanics-based modeling of two-way memory effect of a single crystalline shape-memory alloy , 1997 .

[111]  Z. G. Wang,et al.  Temperature memory effect in CuAlNi single crystalline and CuZnAl polycrystalline shape memory alloys , 2006 .

[112]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect , 1999 .

[113]  H. Maier,et al.  Strain–temperature behavior of NiTiCu shape memory single crystals , 2001 .

[114]  P. McCormick,et al.  Thermodynamic analysis of shape memory phenomena-I. Effect of transformation plasticity on elastic strain energy , 2000 .

[115]  Srikanth Vedantam,et al.  A lattice-based model of the kinetics of twin boundary motion , 2003 .

[116]  Miinshiou Huang,et al.  A multivariant micromechanical model for SMAs Part 1. Crystallographic issues for single crystal model , 2000 .

[117]  Tadashige Ikeda,et al.  Constitutive model of shape memory alloys for unidirectional loading considering inner hysteresis loops , 2004 .

[118]  Wael Zaki,et al.  A three-dimensional model of the thermomechanical behavior of shape memory alloys , 2007 .

[119]  E. J. Graesser,et al.  A Proposed Three-Dimensional Constitutive Model for Shape Memory Alloys , 1994 .

[120]  Travis L. Turner,et al.  Finite element analysis of adaptive-stiffening and shape-control SMA hybrid composites , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[121]  D. Lagoudas Shape memory alloys : modeling and engineering applications , 2008 .

[122]  Vidyashankar R. Buravalla,et al.  A Correction to the Brinson's Evolution Kinetics for Shape Memory Alloys , 2008 .

[123]  L. C. Brinson,et al.  Simplifications and Comparisons of Shape Memory Alloy Constitutive Models , 1996 .

[124]  Abhijit Bhattacharyya,et al.  Finite element modeling of cyclic thermal response of shape memory alloy wires with variable material properties , 2000 .

[125]  T. Pence,et al.  Two Variant Modeling of Shape Memory Materials: Unfolding a Phase Diagram Triple Point , 1998 .

[126]  F. Auricchio,et al.  Generalized plasticity and shape-memory alloys , 1996 .

[127]  Hysteresis in shape memory alloys. Is it always a constant? , 2005 .

[128]  Sang-Joo Kim,et al.  Cyclic effects in shape-memory alloys: a one-dimensional continuum model , 1997 .

[129]  S. Vedantam Constitutive equations for rate-dependent pseudoelastic behaviour of shape memory alloys , 2006 .

[130]  W. V. Vaidya,et al.  Understanding the fatigue resistance of gamma titanium aluminide , 1995 .

[131]  Bernard D. Coleman,et al.  Thermodynamics of materials with memory , 1964 .

[132]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[133]  Franz Dieter Fischer,et al.  A micromechanical model for the kinetics of martensitic transformation , 1992 .

[134]  Xiujie Gao,et al.  Phase diagram kinetics for shape memory alloys: a robust finite element implementation , 2007 .

[135]  Xi-Qiao Feng,et al.  Shakedown analysis of shape memory alloy structures , 2007 .

[136]  T Prakash G. Thamburaja,et al.  An isotropic-plasticity-based constitutive model for martensitic reorientation and shape-memory effect in shape-memory alloys , 2007 .

[137]  T Prakash G. Thamburaja,et al.  Thermo-mechanically coupled superelastic response of initially-textured Ti-Ni sheet , 2003 .

[138]  T. P. G. Thamburaja Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys , 2005 .

[139]  K. Tanaka,et al.  Thermodynamic models of pseudoelastic behaviour of shape memory alloys , 1992 .

[140]  E. Patoor,et al.  Determination of the interaction energy in the martensitic state , 2002 .