Unconditional superconvergence analysis of a linearized Crank-Nicolson Galerkin FEM for generalized Ginzburg-Landau equation

In this paper, a linearized Crank-Nicolson Galerkin finite element method (FEM) for generalized Ginzburg-Landau equation (GLE) is considered, in which, the difference method in time and the standard Galerkin FEM are employed. Based on the linearized Crank-Nicolson difference method in time and the standard Galerkin finite element method with bilinear element in space, the time-discrete and space-time discrete systems are both constructed. We focus on a rigorous analysis and consideration of unconditional superconvergence error estimates of the discrete schemes. Firstly, by virtue of the temporal error results, the regularity for the time-discrete system is presented. Secondly, the classical Ritz projection is used to obtain the spatial error with order $O(h^2)$ in the sense of $L^2-$norm. Thanks to the relationship between the Ritz projection and the interpolated projection, the superclose estimate with order $O(τ^2 + h^2)$ in the sense of $H^1-$norm is derived. Thirdly, it follows from the interpolated postprocessing technique that the global superconvergence result is deduced. Finally, some numerical results are provided to confirm the theoretical analysis.

[1]  Q. Finite Element Methods for the Time-Dependent Ginzburg-Landau Model of Superconductivity , 2001 .

[2]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.

[3]  R. Vaillancourt,et al.  2D Ginzburg-Landau System of Complex Modulation for Coupled Nonlinear Transmission Lines , 2009 .

[4]  Chengming Huang,et al.  Galerkin finite element method for the nonlinear fractional Ginzburg–Landau equation , 2017 .

[5]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[6]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation , 2017, Journal of Scientific Computing.

[7]  Mai-mai Lin,et al.  Wave packet propagating in an electrical transmission line , 2005 .

[8]  Nail Akhmediev,et al.  Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation , 1996 .

[9]  Q. Chang,et al.  Difference methods for computing the Ginzburg‐Landau equation in two dimensions , 2011 .

[10]  Alidou Mohamadou,et al.  Modulated waves and chaotic-like behaviours in the discrete electrical transmission line , 2007 .

[11]  Weiwei Sun,et al.  Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..

[12]  Qiang Du,et al.  Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..

[13]  Shi Dong-yang,et al.  Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016 .

[14]  Weiwei Sun,et al.  Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.

[15]  Zhao Lifeng,et al.  The global well-posedness and spatial decay of solutions for the derivative complex Ginzburg–Landau equation in H1 , 2004 .

[16]  Adrian Ankiewicz,et al.  Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Yunqing Huang,et al.  An Alternating Crank--Nicolson Method for Decoupling the Ginzburg--Landau Equations , 1998 .

[18]  Adrian Ankiewicz,et al.  Dissipative solitons : from optics to biology and medicine , 2008 .

[19]  Zhaohui Huo,et al.  Global well-posedness for the generalized 2D Ginzburg–Landau equation , 2009 .

[20]  Huadong Gao,et al.  Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations , 2016, J. Sci. Comput..

[21]  Dongyang Shi,et al.  Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016, Appl. Math. Comput..

[22]  Huadong Gao,et al.  Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.

[23]  M. Li,et al.  An efficient difference scheme for the coupled nonlinear fractional Ginzburg–Landau equations with the fractional Laplacian , 2018, Numerical Methods for Partial Differential Equations.

[24]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[25]  M. Li,et al.  A linearized Crank–Nicolson Galerkin FEMs for the nonlinear fractional Ginzburg–Landau equation , 2019 .

[26]  Zhi‐zhong Sun,et al.  A linearized high‐order difference scheme for the fractional Ginzburg–Landau equation , 2017 .

[27]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[28]  V. Škarka,et al.  Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations. , 2006, Physical review letters.

[29]  B. Guo,et al.  Analysis of some finite difference schemes for two‐dimensional Ginzburg‐Landau equation , 2011 .

[30]  Weiwei Sun,et al.  A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media , 2014, SIAM J. Numer. Anal..