Unconditional superconvergence analysis of a linearized Crank-Nicolson Galerkin FEM for generalized Ginzburg-Landau equation
暂无分享,去创建一个
Meng Li | Dongyang Shi | Junjun Wang | D. Shi | Junjun Wang | M. Li
[1] Q.. Finite Element Methods for the Time-Dependent Ginzburg-Landau Model of Superconductivity , 2001 .
[2] Dongyang Shi,et al. Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.
[3] R. Vaillancourt,et al. 2D Ginzburg-Landau System of Complex Modulation for Coupled Nonlinear Transmission Lines , 2009 .
[4] Chengming Huang,et al. Galerkin finite element method for the nonlinear fractional Ginzburg–Landau equation , 2017 .
[5] I. Aranson,et al. The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.
[6] Dongyang Shi,et al. Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation , 2017, Journal of Scientific Computing.
[7] Mai-mai Lin,et al. Wave packet propagating in an electrical transmission line , 2005 .
[8] Nail Akhmediev,et al. Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation , 1996 .
[9] Q. Chang,et al. Difference methods for computing the Ginzburg‐Landau equation in two dimensions , 2011 .
[10] Alidou Mohamadou,et al. Modulated waves and chaotic-like behaviours in the discrete electrical transmission line , 2007 .
[11] Weiwei Sun,et al. Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..
[12] Qiang Du,et al. Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..
[13] Shi Dong-yang,et al. Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016 .
[14] Weiwei Sun,et al. Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations , 2015, Numerische Mathematik.
[15] Zhao Lifeng,et al. The global well-posedness and spatial decay of solutions for the derivative complex Ginzburg–Landau equation in H1 , 2004 .
[16] Adrian Ankiewicz,et al. Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] Yunqing Huang,et al. An Alternating Crank--Nicolson Method for Decoupling the Ginzburg--Landau Equations , 1998 .
[18] Adrian Ankiewicz,et al. Dissipative solitons : from optics to biology and medicine , 2008 .
[19] Zhaohui Huo,et al. Global well-posedness for the generalized 2D Ginzburg–Landau equation , 2009 .
[20] Huadong Gao,et al. Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations , 2016, J. Sci. Comput..
[21] Dongyang Shi,et al. Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation , 2016, Appl. Math. Comput..
[22] Huadong Gao,et al. Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.
[23] M. Li,et al. An efficient difference scheme for the coupled nonlinear fractional Ginzburg–Landau equations with the fractional Laplacian , 2018, Numerical Methods for Partial Differential Equations.
[24] Jilu Wang,et al. A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..
[25] M. Li,et al. A linearized Crank–Nicolson Galerkin FEMs for the nonlinear fractional Ginzburg–Landau equation , 2019 .
[26] Zhi‐zhong Sun,et al. A linearized high‐order difference scheme for the fractional Ginzburg–Landau equation , 2017 .
[27] Weiwei Sun,et al. Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..
[28] V. Škarka,et al. Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations. , 2006, Physical review letters.
[29] B. Guo,et al. Analysis of some finite difference schemes for two‐dimensional Ginzburg‐Landau equation , 2011 .
[30] Weiwei Sun,et al. A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media , 2014, SIAM J. Numer. Anal..