Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO2 Nanowires

The role of oxygen diffusion in the response of individual SnO2 nanowires to this gas is studied. Different oxygen partial pressures lead to strong changes of their electrical resistance, even at room temperature. Since surface models fail to explain the experimentally observed long-term resistance transients, it is necessary to make a description of the interaction mechanisms between oxygen species and SnO2 nanowires by taking ion diffusion into account. Our model correctly describes the experimentally measured dependence of the nanowire resistance with oxygen partial pressure, and it can be applied to the characterization of other metal oxide materials.

[1]  V. Sysoev,et al.  A comparative study of SnO2 and SnO2:Cu thin films for gas sensor applications , 1999 .

[2]  Joan Daniel Prades,et al.  First-Principles Study of NO x and SO2 Adsorption onto SnO2 ( 110 ) , 2007 .

[3]  Rotraut Merkle,et al.  Chemical diffusion of oxygen in tin dioxide: Effects of dopants and oxygen partial pressure , 2005 .

[4]  Zhong Lin Wang,et al.  Quantifying oxygen diffusion in ZnO nanobelt , 2006 .

[5]  Alex Zunger,et al.  Origins of coexistence of conductivity and transparency in SnO(2). , 2002, Physical review letters.

[6]  Noboru Yamazoe,et al.  Toward innovations of gas sensor technology , 2005 .

[7]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[8]  Z. Fan,et al.  ZnO nanowire field-effect transistor and oxygen sensing property , 2004 .

[9]  P. B. Weisz,et al.  Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis , 1953 .

[10]  R. L. Longini,et al.  Oxygen vacancy diffusion in SnO2 thin films , 1980 .

[11]  J. Maier Festkörper — Fehler und Funktion , 2000 .

[12]  Peidong Yang,et al.  Photochemical sensing of NO(2) with SnO(2) nanoribbon nanosensors at room temperature. , 2002, Angewandte Chemie.

[13]  A. Kolmakov,et al.  Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire. , 2005, The journal of physical chemistry. B.

[14]  Vincenzo Guidi,et al.  Electrical Properties of Tin Dioxide Two-Dimensional Nanostructures , 2004 .

[15]  G. Neumann,et al.  The investigation of the pressure and temperature dependence of the electrical conductivity of thin zinc oxide films with high resistances , 1986 .

[16]  Jordi Arbiol,et al.  Optimization of tin dioxide nanosticks faceting for the improvement of palladium nanocluster epitaxy , 2002 .

[17]  U. Diebold,et al.  The surface and materials science of tin oxide , 2005 .

[18]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[19]  V. Lantto,et al.  Some effects of mobile donors on electron trapping at semiconductor surfaces , 1996 .

[20]  M. Gillan,et al.  First-principles study of the interaction of oxygen with the SnO2(110) surface , 2001 .

[21]  T. Rantala,et al.  Computational study of charge accumulation at SnO2(110) surface , 2005 .

[22]  Martin Moskovits,et al.  Nanoengineered chemiresistors: the interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires , 2007 .

[23]  Douglas C. Meier,et al.  Coupling Nanowire Chemiresistors with MEMS Microhotplate Gas Sensing Platforms , 2007 .

[24]  Joachim Maier,et al.  Chemical diffusion of oxygen in tin dioxide , 2001 .

[25]  Joachim Goschnick,et al.  A gradient microarray electronic nose based on percolating SnO(2) nanowire sensing elements. , 2007, Nano letters.

[26]  Rotraut Merkle,et al.  Space charge influenced oxygen incorporation in oxides: in how far does it contribute to the drift of Taguchi sensors? , 2002 .

[27]  Hao Shen,et al.  Size-dependent photoconductance in SnO2 nanowires. , 2005, Small.

[28]  S Mathur,et al.  Portable microsensors based on individual SnO2 nanowires , 2007, Nanotechnology.

[29]  Miriam Susana Castro,et al.  Influence of frozen distributions of oxygen vacancies on tin oxide conductance , 1999 .

[30]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[31]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[32]  Dmitri O. Klenov,et al.  Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. , 2005, Nano letters.

[33]  Influence of oxygen adsorption and diffusion on the overlapping of intergranular potential barriers in SnO2 thick films , 2004 .

[34]  Phaedon Avouris,et al.  Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts , 2003 .

[35]  T. Choi,et al.  Fabrication and electrical characterization of circuits based on individual tin oxide nanowires , 2006, Nanotechnology.

[36]  S. Barth,et al.  Molecule-based chemical vapor growth of aligned SnO2 nanowires and branched SnO2/V2O5 heterostructures. , 2007, Small.

[37]  G. Korotcenkov Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches , 2005 .

[38]  Jordi Arbiol,et al.  High response and stability in CO and humidity measures using a single SnO2 nanowire , 2007 .

[39]  Sanjay Mathur,et al.  Electrical properties of individual tin oxide nanowires contacted to platinum electrodes , 2007 .