Computation of Zames-Falb Multipliers Revisited

The convex approach to the absolute stability problem is considered. Gapski and Geromel's algorithm for computing Zames-Falb multipliers, used in determining stability, treats the problem as an optimization problem. It is found that their algorithm may terminate prematurely in some cases, failing to find the optimal multiplier. We propose an improvement that always finds an ascent direction and a multiplier that improves the objective function whenever one exists.

[1]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[2]  Franco Blanchini,et al.  Control of production-distribution systems with unknown inputs and system failures , 2000, IEEE Trans. Autom. Control..

[3]  Leon S. Lasdon,et al.  Optimization Theory of Large Systems , 1970 .

[4]  W. Rudin Principles of mathematical analysis , 1964 .

[5]  T. Başar Absolute Stability of Nonlinear Systems of Automatic Control , 2001 .

[6]  A. Wills,et al.  Zames-Falb multipliers for quadratic programming , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[8]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[9]  J. Wen,et al.  Robustness analysis of LTI systems with structured incrementally sector bounded nonlinearities , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[10]  P. Falb,et al.  Stability Conditions for Systems with Monotone and Slope-Restricted Nonlinearities , 1968 .

[11]  I. Sandberg A frequency-domain condition for the stability of feedback systems containing a single time-varying nonlinear element , 1964 .

[12]  Franco Blanchini,et al.  Least inventory control of multistorage systems with non-stochastic unknown inputs , 1997, IEEE Trans. Robotics Autom..

[13]  G. Zames On the input-output stability of time-varying nonlinear feedback systems--Part II: Conditions involving circles in the frequency plane and sector nonlinearities , 1966 .

[14]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[15]  Michael G. Safonov,et al.  Positivity Preservation Properties of the Rantzer Multipliers , 2011, IEEE Transactions on Automatic Control.

[16]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[17]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[18]  George Zames On the stability of nonlinear, time-varying feedback systems. , 1964 .

[19]  K. Narendra,et al.  An off-axis circle criterion for stability of feedback systems with a monotonic nonlinearity , 1968 .

[20]  Franco Blanchini,et al.  Stabilization of multi-inventory systems with uncertain demand and setups , 2003, IEEE Trans. Robotics Autom..

[21]  Francesco Borrelli,et al.  Robust invariant set theory applied to networked buffer-level control , 2008, 2008 47th IEEE Conference on Decision and Control.

[22]  Michael G. Safonov,et al.  Computer-aided stability analysis renders Papov criterion obsolete , 1987 .

[23]  Jose C. Geromel,et al.  A convex approach to the absolute stability problem , 1994, IEEE Trans. Autom. Control..

[24]  Robert G. Bland,et al.  New Finite Pivoting Rules for the Simplex Method , 1977, Math. Oper. Res..