Breaking the k2 barrier for explicit RIP matrices
暂无分享,去创建一个
Stephen J. Dilworth | Kevin Ford | Jean Bourgain | Denka Kutzarova | Sergei Konyagin | J. Bourgain | S. Dilworth | S. Konyagin | D. Kutzarova | Kevin Ford
[1] Jean Bourgain,et al. On a variant of sum-product estimates and explicit exponential sum bounds in prime fields , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] Анатолий Алексеевич Карацуба,et al. Двойные суммы Клоостермана@@@Double Kloosterman sums , 1999 .
[3] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[4] Ronald A. DeVore,et al. Deterministic constructions of compressed sensing matrices , 2007, J. Complex..
[5] R. DeVore,et al. A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .
[6] Stephen J. Dilworth,et al. Explicit constructions of RIP matrices and related problems , 2010, ArXiv.
[7] Vladimir N. Temlyakov,et al. On the size of incoherent systems , 2011, J. Approx. Theory.
[8] Deanna Needell,et al. Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..
[9] E. Livshitz. On efficiency of Orthogonal Matching Pursuit , 2010, 1004.3946.
[10] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[11] Michael Rosen,et al. A classical introduction to modern number theory , 1982, Graduate texts in mathematics.
[12] Piotr Indyk,et al. Combining geometry and combinatorics: A unified approach to sparse signal recovery , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.
[13] S. Mendelson,et al. Reconstruction and Subgaussian Operators in Asymptotic Geometric Analysis , 2007 .
[14] Shamgar Gurevich,et al. Statistical RIP and Semi-Circle Distribution of Incoherent Dictionaries , 2009, ArXiv.
[15] E. Candès. The restricted isometry property and its implications for compressed sensing , 2008 .
[16] Entao Liu,et al. Orthogonal Super Greedy Algorithm and Applications in Compressed Sensing ∗ , 2010 .
[17] Michael Elad,et al. On Lebesgue-type inequalities for greedy approximation , 2007, J. Approx. Theory.
[18] Jean Bourgain,et al. Multilinear Exponential Sums in Prime Fields Under Optimal Entropy Condition on the Sources , 2009 .
[19] Terence Tao,et al. Additive combinatorics , 2007, Cambridge studies in advanced mathematics.
[20] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[21] E. D. Gluskin. The octahedron is badly approximated by random subspaces , 1986 .
[22] Douglas R. Woodall. A theorem on cubes , 1977 .
[23] J. Bourgain,et al. Exponential sum estimates over a subgroup in an arbitrary finite field , 2011 .
[24] M. Rudelson,et al. On sparse reconstruction from Fourier and Gaussian measurements , 2008 .
[25] S. Muthukrishnan,et al. Approximation of functions over redundant dictionaries using coherence , 2003, SODA '03.
[26] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[27] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[28] Béla Bollobás,et al. Sums in the grid , 1996, Discret. Math..