Optimal error estimates for the scalar auxiliary variable finite-element schemes for gradient flows

We carry out in this paper a rigorous error analysis for a finite element discretization of the scalar auxiliary variable (SAV) schemes. The finite-element method we study is a Galerkin method with standard Lagrange elements based on a mixed variational formulation. We derive optimal error estimates for both the first- and second-order SAV schemes with the finite-element method in space.

[1]  Jie Shen,et al.  Convergence and Error Analysis for the Scalar Auxiliary Variable (SAV) Schemes to Gradient Flows , 2018, SIAM J. Numer. Anal..

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  Xiaofeng Yang,et al.  Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends , 2016, J. Comput. Phys..

[4]  Endre Süli,et al.  Spectral approximation of pattern-forming nonlinear evolution equations with double-well potentials of quadratic growth , 2010, Math. Comput..

[5]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[6]  Cheng Wang,et al.  Error analysis of a mixed finite element method for a Cahn–Hilliard–Hele–Shaw system , 2017, Numerische Mathematik.

[7]  Jie Shen,et al.  A New Class of Efficient and Robust Energy Stable Schemes for Gradient Flows , 2017, SIAM Rev..

[8]  Yinnian He,et al.  Analysis of finite element approximations of a phase field model for two-phase fluids , 2006, Math. Comput..

[9]  Lili Ju,et al.  Linear and unconditionally energy stable schemes for the binary fluid–surfactant phase field model , 2017, 1701.07446.

[10]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[11]  Andreas Prohl,et al.  Error analysis of a mixed finite element method for the Cahn-Hilliard equation , 2004, Numerische Mathematik.

[12]  Xiaofeng Yang,et al.  Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method , 2017 .

[13]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[14]  Ricardo H. Nochetto,et al.  A posteriori error control for the Allen–Cahn problem: circumventing Gronwall's inequality , 2004 .

[15]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[16]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[17]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[18]  Steven M. Wise,et al.  Convergence Analysis of a Second Order Convex Splitting Scheme for the Modified Phase Field Crystal Equation , 2012, SIAM J. Numer. Anal..

[19]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of the Cahn-Hilliard Equation with Convection , 2009, SIAM J. Numer. Anal..

[20]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[21]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[22]  Charles M. Elliott,et al.  The global dynamics of discrete semilinear parabolic equations , 1993 .