Ecological classification and assessment concepts in soil protection.

Evaluation of ecological soil quality requires the integration of physical, chemical, and biological variables. From a biological point of view, the maintenance of biodiversity and the assurance of life support functions are the main goals of protection to secure sustainable land use. To reach these goals, biological concepts for the classification and assessment of soils were developed in various countries, most of them based on similar concepts in limnology and aquatic ecotoxicology, which are already routinely applied. In this article, an overview of existing concepts, as well as a detailed description of the two most promising ones (BISQ from The Netherlands and BBSK from Germany), is given, followed by a discussion of the properties essential to an ideal biological concept for soil protection. Finally, recommendations for further research and a basic outline of a monitoring program ready for immediate use are provided.

[1]  F. Chapin,et al.  Plant Specialization to Environments of Different Resource Availability , 1987 .

[2]  P. Krogh,et al.  Interactions between saprotrophic fungi, bacteria and protozoa on decomposing wheat roots in soil influenced by the fungicide fenpropimorph (Corbel®) : a field study , 2000 .

[3]  Jörg Römbke,et al.  Considerations for the use of soil ecological classification and assessment concepts in soil protection. , 2005, Ecotoxicology and environmental safety.

[4]  M. Loreau Are communities saturated? On the relationship between α, β and γ diversity , 2000 .

[5]  H. Mooney,et al.  Biodiversity and Ecosystem Function , 1994, Praktische Zahnmedizin Odonto-Stomatologie Pratique Practical Dental Medicine.

[6]  E. Pfeiffer,et al.  Wetlands in Central Europe , 2002 .

[7]  L. Pfiffner,et al.  Effects of low-input farming systems on carabids and epigeal spiders - a paired farm approach , 2003 .

[8]  N. Straalen The development of a bioindicator system for soil acidity based on arthropod pH preferences , 1997 .

[9]  J. Wright,et al.  An introduction to RIVPACS. , 2000 .

[10]  K. Strenzke,et al.  Untersuchungen über die Tiergemeinschaften des Bodens: Die Oribatiden und ihre Synusien in den Böden Norddeutschlands@@@Untersuchungen uber die Tiergemeinschaften des Bodens: Die Oribatiden und ihre Synusien in den Boden Norddeutschlands , 1952 .

[11]  J. Wright,et al.  Effects of taxonomic resolution and use of subsets of the fauna on the performance of RIVPACS-type models. , 2000 .

[12]  J. Wright,et al.  Macroinvertebrate frequency data for the RIVPACS III sites in Northern Ireland and some comparisons with equivalent data for Great Britain , 2000 .

[13]  Timo Hamers,et al.  Integrated soil and sediment research : a basis for proper protection : selected proceedings of the first European Conference on Integrated Research for Soil and Sediment Protection and Remediation (EUROSOL) , 2012 .

[14]  Andrea Ruf,et al.  A maturity index for predatory soil mites (Mesostigmata: Gamasina) as an indicator of environmental impacts of pollution on forest soils , 1998 .

[15]  M. Murakami,et al.  Seasonal subsidy stabilizes food web dynamics: Balance in a heterogeneous landscape , 2002, Ecological Research.

[16]  Bradford A. Hawkins,et al.  EFFECTS OF SAMPLING EFFORT ON CHARACTERIZATION OF FOOD-WEB STRUCTURE , 1999 .

[17]  A. Lang,et al.  Response types in Collembola towards copper in the microenvironment. , 2000, Environmental pollution.

[18]  M. Roß-Nickoll Die Arthropodenfauna von Nichtzielflächen und die Konsequenzen für die Bewertung der Auswirkungen von Pflanzenschutzmitteln auf den terrestrischen Bereich des Naturhaushaltes , 2004 .

[19]  G. Stamou,et al.  Design and evaluation of nematode 18S rDNA primers for PCR and denaturing gradient gel electrophoresis (DGGE) of soil community DNA , 2003 .

[20]  J. P. Grime,et al.  Plant Strategies and Vegetation Processes. , 1980 .

[21]  Christian Kampichler,et al.  Long-term dynamics and interrelationships of soil Collembola and microorganisms in an arable landscape following land use change , 2002 .

[22]  I. Gordon,et al.  Spatial distribution of upland beetles in relation to landform, vegetation and grazing management , 2002 .

[23]  T. Bongers,et al.  Feeding habits in soil nematode families and genera-an outline for soil ecologists. , 1993, Journal of nematology.

[24]  D. Parkinson,et al.  The disappearance of the empty tests of litter- and soil-testate amoebae (Testacea, Rhizopoda, Protozoa) , 1981 .

[25]  C. Mulder,et al.  Fungal functional diversity inferred along Ellenberg's abiotic gradients: Palynological evidence from different soil microbiota , 2003 .

[26]  J. Wright,et al.  Derivation of a biological quality index for river sites: Comparison of the observed with the expected fauna , 1996 .

[27]  William L. Hargrove,et al.  A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues , 1990 .

[28]  V. Wolters,et al.  Spatial aspects of food webs , 2006 .

[29]  Nigel E. Stork,et al.  Invertebrates as determinants and indicators of soil quality , 1992 .

[30]  Richard H. Norris,et al.  DEVELOPMENT AND EVALUATION OF PREDICTIVE MODELS FOR MEASURING THE BIOLOGICAL INTEGRITY OF STREAMS , 2000 .

[31]  H. Setälä,et al.  Nonparasitic Nematoda provide evidence for a linear response of functionally important soil biota to increasing livestock density , 2005, Naturwissenschaften.

[32]  E. Bååth,et al.  Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis , 1993 .

[33]  Anton M. Breure,et al.  Observational and simulated evidence of ecological shifts within the soil nematode community of agroecosystems under conventional and organic farming , 2003 .

[34]  E. Box,et al.  Global classification of natural terrestrial ecosystems , 1976, Vegetatio.

[35]  Peter M. Chapman,et al.  Sediment quality criteria from the sediment quality triad: An example , 1986 .

[36]  Brigitte Braschler,et al.  Grain-dependent relationships between plant productivity and invertebrate species richness and biomass in calcareous grasslands , 2004 .

[37]  V. Wolters,et al.  Soil function in a changing world: the role of invertebrate ecosystem engineers , 1997 .

[38]  D. Spurgeon,et al.  The use of macro-invertebrates for population and community monitoring of metal contamination - indicator taxa, effect parameters and the need for a soil invertebrate prediction and classification scheme (SIVPACS). , 1996 .

[39]  Mike T. Furse,et al.  The reference condition: problems and solutions. , 2000 .

[40]  Neo D. Martinez,et al.  TROPHIC RANK AND THE SPECIES-AREA RELATIONSHIP , 1999 .

[41]  Winfried Schröder,et al.  Soil monitoring in Germany , 2004 .

[42]  Roderick Hunt,et al.  Comparative Plant Ecology: A Functional Approach to Common British Species , 1989 .

[43]  A. Uitterlinden,et al.  Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA , 1993, Applied and environmental microbiology.

[44]  Tom Bongers,et al.  The maturity index: an ecological measure of environmental disturbance based on nematode species composition , 1990, Oecologia.

[45]  Mike T. Furse,et al.  Biological assessment of river quality: development of AUSRIVAS models and outputs. , 2000 .

[46]  François Gillet,et al.  La phytosociologie synusiale intégrée : objets et concepts , 1991 .

[47]  K. Domsch,et al.  A physiological method for the quantitative measurement of microbial biomass in soils , 1978 .

[48]  Ecologische kwaliteit van de bodem , 2003 .

[49]  B. Healy Distribution of terrestrial Enchytraeidae in Ireland. , 1980 .

[50]  A. Schouten,et al.  Een indicatorsysteem voor life support functies van de bodem in relatie tot biodioversiteit , 1997 .

[51]  M. Schartl,et al.  Biogeography of the Amazon molly, Poecilia formosa , 2002 .

[52]  K. Behre The history of rye cultivation in Europe , 1992 .

[53]  A. Breure,et al.  Bioindicators and biomonitors: principles, concepts and applications. , 2003 .

[54]  François Gillet,et al.  Integrated synusial phytosociology: some notes on a new, multiscalar approach to vegetation analysis , 1996 .

[55]  T. Reynoldson,et al.  The Reference Condition: A Comparison of Multimetric and Multivariate Approaches to Assess Water-Quality Impairment Using Benthic Macroinvertebrates , 1997, Journal of the North American Benthological Society.

[56]  J. P. Grime,et al.  Comparative Plant Ecology , 1988, Springer Netherlands.

[57]  C. Hawkins,et al.  Broad‐scale geographical patterns in local stream insect genera richness , 2003 .

[58]  D. Zwart,et al.  Assessing fungal species sensitivity to environmental gradients by the Ellenberg indicator values of above-ground vegetation , 2003 .

[59]  L. Posthuma,et al.  Heavy-metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences , 1993 .

[60]  Defining Soil Quality For Ecosystems and Ecosystem Functioning , 1993 .

[61]  D. Charman,et al.  Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in western Russia with special attention to niche separation in closely related taxa. , 1999, Protist.

[62]  D. Zwart,et al.  A biological indicator for soil quality , 2004 .

[63]  J. Lawton,et al.  Organisms as ecosystem engineers , 1994 .

[64]  H. Insam,et al.  Metabolic quotient of the soil microflora in relation to plant succession , 1989, Oecologia.

[65]  Mike T. Furse,et al.  The development of the BEAST: a predictive approach for assessing sediment quality in the North American Great Lakes. , 2000 .

[66]  M. Judas,et al.  Distribution patterns of carabid beetle species at the landscape‐level , 2002 .

[67]  L. Metzeling,et al.  Macroinvertebrate Regionalisation for use in the Management of Aquatic Ecosystems in Victoria, Australia , 2002, Environmental monitoring and assessment.

[68]  Michiel Rutgers,et al.  The use of microorganisms in ecological soil classification and assessment concepts. , 2005, Ecotoxicology and environmental safety.

[69]  Michiel Rutgers,et al.  BoBI op weg. Tussentijdse evaluatie van het project Bodembiologische Indicator , 2002 .

[70]  Dieter Martin Zur Autökologie der Spinnen (Arachnida: Araneae). I. Charakteristik der Habitatausstattung und Präferenzverhalten epigäischer Spinnenarten , 1991 .

[71]  H. Insam,et al.  EVALUATION OF METHODS TO ESTIMATE THE SOIL MICROBIAL BIOMASS AND THE RELATIONSHIP WITH SOIL TEXTURE AND ORGANIC MATTER , 1992 .

[72]  A. Spongberg,et al.  Soil invertebrate and microbial communities, and decomposition as indicators of polycyclic aromatic hydrocarbon contamination , 2002 .

[73]  J. F. Wright,et al.  Α comparison of alternative techniques for prediction of the fauna of running‐water sites in Great Britain , 1999 .

[74]  E. Pfeiffer,et al.  Wetlands in Central Europe : soil organisms, soil ecological processes, and trace gas emissions , 2002 .

[75]  P. Bartlein,et al.  Global Changes During the Last 3 Million Years: Climatic Controls and Biotic Responses , 1992 .

[76]  A. Lang,et al.  Predation by ground beetles and wolf spiders on herbivorous insects in a maize crop , 1999 .

[77]  A. Gange Translocation of mycorrhizal fungi by earthworms during early succession , 1993 .

[78]  Joel E. Cohen,et al.  Bacterial traits, organism mass, and numerical abundance in the detrital soil food web of Dutch agricultural grasslands , 2004 .

[79]  G. Yeates,et al.  Nematodes as soil indicators: functional and biodiversity aspects , 2003, Biology and Fertility of Soils.

[80]  Joel E. Cohen,et al.  Temporal Variation in Food Web Structure: 16 Empirical Cases , 1991 .

[81]  U. Graefe,et al.  Annelid coenoses of wetlands representing different decomposer communities , 2002 .

[82]  Howard T. Odum,et al.  Nature’s pulsing paradigm , 1995 .

[83]  W. Liesack,et al.  Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. , 2000, FEMS microbiology ecology.

[84]  J. Bloem,et al.  Pilotproject Bodembiologische Indicator voor Life Support Functies van de bodem , 2001 .

[85]  D. Viciani,et al.  Note sulla flora dei pascoli di altitudine del Pratomagno (Toscana or.) e considerazioni sugli effetti dovuti alla costruzione del metanodotto , 1996 .

[86]  R. Lande Statistics and partitioning of species diversity, and similarity among multiple communities , 1996 .

[87]  Nico M. van Straalen,et al.  Evaluation of bioindicator systems derived from soil arthropod communities , 1998 .

[88]  A. Breure,et al.  Risk Assessment, Microbial Communities, and Pollution-Induced Community Tolerance , 1999 .

[89]  U. Willerding Zur Geschichte der Unkräuter Mitteleuropas , 1986 .

[90]  J. Römbke,et al.  Status and outlook of ecological soil classification and assessment concepts. , 2005, Ecotoxicology and environmental safety.

[91]  V. Standen Factors affecting the distribution of lumbricids (Oligochaeta) in associations at peat and mineral sites in northern England , 1979, Oecologia.

[92]  R. Whittaker,et al.  Scale and species richness: towards a general, hierarchical theory of species diversity , 2001 .