Influence of hardening type on self-heating of metallic materials under cyclic loadings at low amplitude
暂无分享,去创建一个
[1] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[2] J. Chaboche,et al. Mechanics of Solid Materials , 1990 .
[3] M. P. Luong,et al. Infrared thermographic scanning of fatigue in metals , 1995 .
[4] F. Hild,et al. Prediction of self-heating measurements under proportional and non-proportional multiaxial cyclic loadings , 2007 .
[5] S. L. Phoenix,et al. Weibull strength statistics for graphite fibres measured from the break progression in a model graphite/glass/epoxy microcomposite , 1991 .
[6] Antonino Risitano,et al. Rapid determination of the fatigue curve by the thermographic method , 2002 .
[7] François Hild,et al. Hétérogénéité des contraintes et rupture des matériaux fragiles , 1992 .
[8] R. Harry,et al. Measuring the Actual Endurance Limit of One Specimen Using a Nondestructive Method , 1981 .
[9] André Galtier,et al. Influence de la microstructure des aciers sur leur propriétés mécaniques , 2002 .
[10] André Galtier. Contribution à l'étude de l'endommagement des aciers sous sollicitations uni ou multi-axiales , 1993 .
[11] François Hild,et al. A probabilistic two-scale model for high-cycle fatigue life predictions , 2005 .
[12] Antonino Risitano,et al. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components , 2000 .
[13] W. Weibull. A statistical theory of the strength of materials , 1939 .
[14] Jean-Yves Bérard,et al. Détermination de la limite d’endurance des matériaux par thermographie infrarouge. Application sur un bras de suspension , 1998 .
[15] W. Weibull. A Statistical Distribution Function of Wide Applicability , 1951 .
[16] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[17] André Chrysochoos,et al. An infrared image processing to analyse the calorific effects accompanying strain localisation , 2000 .
[18] H. Harig,et al. ESTIMATION OF THE FATIGUE LIMIT BY PROGRESSIVELY‐INCREASING LOAD TESTS , 1980 .
[19] F. Hild,et al. Determination of an HCF criterion by thermal measurements under biaxial cyclic loading , 2007 .
[20] Jean Lemaitre,et al. Damage 90: a post processor for crack initiation , 1994 .
[21] André Zaoui,et al. An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .
[22] Dominique Jeulin,et al. Modeles morphologiques de structures aleatoires et de changement d'echelle , 1991 .
[23] François Hild,et al. Identification of the scatter in high cycle fatigue from temperature measurements , 2004 .
[24] N. Dmitriev,et al. Thermal radiation of steel specimens under cyclic loading , 1989 .
[25] K. Trustrum,et al. Statistical approach to brittle fracture , 1977 .
[26] B. Yang,et al. Temperature evolution during fatigue damage , 2005 .
[27] Jean-Louis Chaboche,et al. Cyclic Viscoplastic Constitutive Equations, Part I: A Thermodynamically Consistent Formulation , 1993 .
[28] Roger Cazaud. La fatigue des métaux , 1948 .
[29] Raffaella Sesana,et al. A new iteration method for the thermographic determination of fatigue limit in steels , 2005 .
[30] E. Kröner. Zur plastischen verformung des vielkristalls , 1961 .