Relationships between L-ordered convergence structures and strong L-topologies

By making use of the intrinsic fuzzy inclusion orders on the fuzzy power set, the relationships between L-ordered convergence spaces and strong L-topological spaces are researched, where L is a commutative unital quantale. It is shown that the category of strong L-topological spaces can be embedded in the category of L-ordered convergence spaces as a reflective subcategory. As a result, we observe that there is a Galois correspondence between the category of L-ordered convergence spaces and the category of strong L-topological spaces. Further, it is proved that the class of all strong L-topological L-ordered convergence spaces precisely is the class of all strong L-topological spaces, and the class of spaces with non-idempotent L-ordered interior operators is characterized as a subclass of the class of L-ordered convergence spaces.

[1]  J. Goguen L-fuzzy sets , 1967 .

[2]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[3]  Lei Fan,et al.  A New Approach to Quantitative Domain Theory , 2001, MFPS.

[4]  Dexue Zhang,et al.  An enriched category approach to many valued topology , 2007, Fuzzy Sets Syst..

[5]  Ulrich Höhle,et al.  Non-classical logics and their applications to fuzzy subsets : a handbook of the mathematical foundations of fuzzy set theory , 1995 .

[6]  Bobby Schmidt,et al.  Fuzzy math , 2001 .

[7]  D. Kent,et al.  Convergence functions and their related topologies , 1964 .

[8]  Wei Yao,et al.  On many-valued stratified L-fuzzy convergence spaces , 2008, Fuzzy Sets Syst..

[9]  R. Belohlávek Fuzzy Relational Systems: Foundations and Principles , 2002 .

[10]  Fang Jinming,et al.  Stratified L-ordered convergence structures , 2010, Fuzzy Sets Syst..

[11]  Yong-Ming Li,et al.  Limit structures over completely distributive lattices , 2002, Fuzzy Sets Syst..

[12]  Gerhard Preub,et al.  SEMIUNIFORM CONVERGENCE SPACES , 1995 .

[13]  R. Lowen Convergence in fuzzy topological spaces , 1977 .

[14]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[15]  Ulrich Höhle,et al.  Probabilistic topologies induced by L-fuzzy uniformities , 1982 .

[16]  Alexander P. Sostak,et al.  Axiomatic Foundations Of Fixed-Basis Fuzzy Topology , 1999 .

[17]  Gunther Jäger,et al.  On fuzzy function spaces. , 1999 .

[18]  Gunther Jäger Even continuity and equicontinuity in fuzzy topology , 2001, Fuzzy Sets Syst..

[19]  H. Poppe,et al.  Compactness in general function spaces , 1974 .

[20]  Wei Yao,et al.  Quantitative domains via fuzzy sets: Part I: Continuity of fuzzy directed complete posets , 2010, Fuzzy Sets Syst..

[21]  Dexue Zhang,et al.  Fundamental study: Complete and directed complete Ω-categories , 2007 .

[22]  Luoshan Xu,et al.  Characterizations of fuzzifying topologies by some limit structures , 2001, Fuzzy Sets Syst..

[23]  Qi-Ye Zhang,et al.  Continuity in quantitative domains , 2005, Fuzzy Sets Syst..

[24]  Mustafa Demirci,et al.  A theory of vague lattices based on many-valued equivalence relations - I: general representation results , 2005, Fuzzy Sets Syst..

[25]  Gunther Jäger,et al.  A CATEGORY OF L-FUZZY CONVERGENCE SPACES , 2001 .

[26]  Michael Wagenknecht,et al.  Computational aspects of fuzzy arithmetics based on Archimedean t-norms , 2001, Fuzzy Sets Syst..

[27]  E. Lowen,et al.  A Topological Universe Extension of FTS , 1992 .

[28]  Robert Lowen,et al.  The categorical topology approach to fuzzy topology and fuzzy convergence , 1991 .

[29]  Gunther Jäger,et al.  Subcategories of lattice-valued convergence spaces , 2005, Fuzzy Sets Syst..

[30]  Mustafa Demirci,et al.  A theory of vague lattices based on many-valued equivalence relations - II: complete lattices , 2005, Fuzzy Sets Syst..