Functional Sufficient Dimension Reduction for Functional Data Classification
暂无分享,去创建一个
[1] Piotr Kokoszka,et al. Inference for Functional Data with Applications , 2012 .
[2] De-Shuang Huang,et al. Independent component analysis-based penalized discriminant method for tumor classification using gene expression data , 2006, Bioinform..
[3] Fabrice Rossi,et al. Support Vector Machine For Functional Data Classification , 2006, ESANN.
[4] Heng Lian,et al. Series expansion for functional sufficient dimension reduction , 2014, J. Multivar. Anal..
[5] Frédéric Ferraty,et al. Curves discrimination: a nonparametric functional approach , 2003, Comput. Stat. Data Anal..
[6] James O. Ramsay,et al. Functional Data Analysis , 2005 .
[7] L. Ferré,et al. Smoothed Functional Inverse Regression , 2005 .
[8] Guochang Wang,et al. Robust functional sliced inverse regression , 2017 .
[9] P. Sarda,et al. SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .
[10] Aldo Goia,et al. A partitioned Single Functional Index Model , 2015, Comput. Stat..
[11] Florentina Bunea,et al. Functional classification in Hilbert spaces , 2005, IEEE Transactions on Information Theory.
[12] Enea G. Bongiorno,et al. Contributions in Infinite-Dimensional Statistics and Related Topics , 2014 .
[13] Peter Hall,et al. A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.
[14] Mike West,et al. The Use of Unlabeled Data in Predictive Modeling , 2007, 0710.4618.
[15] Ker-Chau Li. Sliced inverse regression for dimension reduction (with discussion) , 1991 .
[16] B. Silverman,et al. Smoothed functional principal components analysis by choice of norm , 1996 .
[17] Gareth M. James,et al. Functional linear discriminant analysis for irregularly sampled curves , 2001 .
[18] Magalie Fromont,et al. Functional Classification with Margin Conditions , 2006, COLT.
[19] Ho-Jin Lee,et al. Optimal classification for time-course gene expression data using functional data analysis , 2008, Comput. Biol. Chem..
[20] Sayan Mukherjee,et al. Localized Sliced Inverse Regression , 2008, NIPS.
[21] Y Wu,et al. Effective dimension reduction for sparse functional data. , 2015, Biometrika.
[22] Kehui Chen,et al. Localized Functional Principal Component Analysis , 2015, Journal of the American Statistical Association.
[23] Baoxue Zhang,et al. Dimension reduction in functional regression using mixed data canonical correlation analysis , 2013 .
[24] L. Ferré,et al. Functional sliced inverse regression analysis , 2003 .
[25] P. Hall,et al. Achieving near perfect classification for functional data , 2012 .
[26] Andrés M. Alonso,et al. Supervised classification for functional data: A weighted distance approach , 2012, Comput. Stat. Data Anal..
[27] José A. Vilar,et al. Discriminant and cluster analysis for Gaussian stationary processes: local linear fitting approach , 2004 .
[28] Bing Li,et al. Dimension reduction in regression without matrix inversion , 2007 .
[29] Irene Epifanio,et al. Shape Descriptors for Classification of Functional Data , 2008, Technometrics.
[30] Christos Davatzikos,et al. Multilevel Functional Principal Component Analysis for High-Dimensional Data , 2011, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[31] Ricardo Fraiman,et al. Robust estimation and classification for functional data via projection-based depth notions , 2007, Comput. Stat..
[32] Yan Zhou,et al. The hybrid method of FSIR and FSAVE for functional effective dimension reduction , 2015, Comput. Stat. Data Anal..
[33] Gareth M. James,et al. Interpretable dimension reduction for classifying functional data , 2013, Comput. Stat. Data Anal..
[34] Nan Lin,et al. Functional contour regression , 2013, J. Multivar. Anal..
[35] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[36] Yuko Araki,et al. Functional Logistic Discrimination Via Regularized Basis Expansions , 2009 .
[37] Juan Romo,et al. Depth-based classification for functional data , 2005, Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications.
[38] Hans-Georg Müller,et al. Classification using functional data analysis for temporal gene expression data , 2006, Bioinform..
[39] Bani K. Mallick,et al. Bayesian Curve Classification Using Wavelets , 2007 .
[40] Allou Samé,et al. A hidden process regression model for functional data description. Application to curve discrimination , 2010, Neurocomputing.
[41] P. Vieu,et al. Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .
[42] H. Lian. Functional sufficient dimension reduction: Convergence rates and multiple functional case , 2015 .
[43] Anestis Antoniadis,et al. Dimension reduction in functional regression with applications , 2006, Comput. Stat. Data Anal..
[44] Hyejin Shin. An extension of Fisher's discriminant analysis for stochastic processes , 2008 .
[45] James O. Ramsay,et al. Applied Functional Data Analysis: Methods and Case Studies , 2002 .
[46] Yufeng Liu,et al. Adaptively Weighted Large Margin Classifiers , 2013, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[47] Sara López-Pintado,et al. Robust Functional Supervised Classification for Time Series , 2014, J. Classif..
[48] Xiang-Nan Feng,et al. Functional Partial Linear Single‐index Model , 2016 .
[49] Gérard Biau,et al. FUNCTIONAL SUPERVISED CLASSIFICATION WITH WAVELETS , 2008 .
[50] Nan Lin,et al. Functional k-means inverse regression , 2014, Comput. Stat. Data Anal..
[51] Gilbert Saporta,et al. PLS classification of functional data , 2005, Comput. Stat..
[52] Ayhan Demiriz,et al. Semi-Supervised Support Vector Machines , 1998, NIPS.
[53] D. Donoho,et al. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[54] Ker-Chau Li,et al. Sliced Inverse Regression for Dimension Reduction , 1991 .