Conservative Fourier spectral method and numerical investigation of space fractional Klein-Gordon-Schrödinger equations
暂无分享,去创建一个
[1] Luming Zhang,et al. A class of conservative orthogonal spline collocation schemes for solving coupled Klein-Gordon-Schrödinger equations , 2008, Appl. Math. Comput..
[2] Wei Zeng,et al. Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations , 2017, J. Sci. Comput..
[3] K. Diethelm,et al. Fractional Calculus: Models and Numerical Methods , 2012 .
[4] Fanhai Zeng,et al. Numerical Methods for Fractional Calculus , 2015 .
[5] Chengming Huang,et al. Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation , 2016, J. Comput. Appl. Math..
[6] Wei Yang,et al. Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative , 2013, J. Comput. Phys..
[7] Bazar Babajanov,et al. The Fractional Schrodinger-Klein-Gordon Equation and Intermediate Relativism , 2013 .
[8] C. Pozrikidis. The Fractional Laplacian , 2016 .
[9] MOHSEN ZAYERNOURI,et al. Spectral and Discontinuous Spectral Element Methods for Fractional Delay Equations , 2014, SIAM J. Sci. Comput..
[10] Yangquan Chen,et al. High-order algorithms for Riesz derivative and their applications (II) , 2015, J. Comput. Phys..
[11] K. Burrage,et al. Fourier spectral methods for fractional-in-space reaction-diffusion equations , 2014 .
[12] S. C. Lim,et al. Finite temperature Casimir effect for a massless fractional Klein-Gordon field with fractional Neumann conditions , 2007, 0804.3915.
[13] Yali Duan,et al. Semi-explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral scheme for Klein-Gordon-Schrödinger equations , 2010, Comput. Phys. Commun..
[14] Luming Zhang. Convergence of a conservative difference scheme for a class of Klein-Gordon-Schrödinger equations in one space dimension , 2005, Appl. Math. Comput..
[15] N. Laskin. Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.
[16] Chengming Huang,et al. An energy conservative difference scheme for the nonlinear fractional Schrödinger equations , 2015, J. Comput. Phys..
[17] Aiguo Xiao,et al. Fourier pseudospectral method on generalized sparse grids for the space-fractional Schrödinger equation , 2018, Comput. Math. Appl..
[18] J. P. Roop. Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .
[19] Aiguo Xiao,et al. Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients , 2010, J. Comput. Appl. Math..
[20] V. E. Tarasov. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media , 2011 .
[21] Luming Zhang,et al. High-order linear compact conservative method for the nonlinear Schrödinger equation coupled with the nonlinear Klein–Gordon equation , 2013 .
[22] Weizhu Bao,et al. A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein–Gordon–Schrödinger equations in the nonrelativistic limit regime , 2015, Numerische Mathematik.
[23] Mingliang Wang,et al. The periodic wave solutions for the Klein–Gordon–Schrödinger equations , 2003 .
[24] Jie Shen,et al. Generalized Jacobi functions and their applications to fractional differential equations , 2014, Math. Comput..
[25] Ai-guo Xiao,et al. An efficient conservative difference scheme for fractional Klein-Gordon-Schrödinger equations , 2018, Appl. Math. Comput..
[26] Edson Pindza,et al. Fourier spectral method for higher order space fractional reaction-diffusion equations , 2016, Commun. Nonlinear Sci. Numer. Simul..
[27] Cécile Piret,et al. A Chebyshev PseudoSpectral Method to Solve the Space-Time Tempered Fractional Diffusion Equation , 2014, SIAM J. Sci. Comput..
[28] N. Laskin,et al. Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[29] Hua Liang,et al. Linearly implicit conservative schemes for long-term numerical simulation of Klein-Gordon-Schrödinger equations , 2014, Appl. Math. Comput..
[30] Jie Shen,et al. Spectral Methods: Algorithms, Analysis and Applications , 2011 .
[31] Wei Yang,et al. A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations , 2014, J. Comput. Phys..
[32] Yanzhi Zhang,et al. Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation , 2016, Comput. Math. Appl..
[33] G. Bo-ling,et al. Global well-posedness of the fractional Klein-Gordon-Schrödinger system with rough initial data , 2016 .
[34] Abdul-Qayyum M. Khaliq,et al. An efficient Fourier spectral exponential time differencing method for the space-fractional nonlinear Schrödinger equations , 2018, Comput. Math. Appl..
[35] Mohamed M. Khader,et al. An efficient approximate method for solving linear fractional Klein–Gordon equation based on the generalized Laguerre polynomials , 2013, Int. J. Comput. Math..
[36] X. Liang,et al. A fourth-order implicit-explicit scheme for the space fractional nonlinear Schrödinger equations , 2017, Numerical Algorithms.
[37] Fawang Liu,et al. A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..
[38] Cem Çelik,et al. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..
[39] Xueke Pu,et al. Fractional Partial Differential Equations and their Numerical Solutions , 2015 .
[40] A. Pastor,et al. Orbital stability of periodic waves for theKlein-Gordon-Schrödinger system , 2011 .
[41] F. Polito,et al. Fractional Klein–Gordon Equations and Related Stochastic Processes , 2013, 1308.2139.
[42] A. Pastor,et al. Stability Properties of Periodic Standing Waves for the Klein-Gordon-Schrodinger System , 2009, 0907.2142.
[43] R. Ansari,et al. Bright and singular soliton solutions of the conformable time-fractional Klein–Gordon equations with different nonlinearities , 2018 .
[44] Xuan Zhao,et al. A Fourth-order Compact ADI scheme for Two-Dimensional Nonlinear Space Fractional Schrödinger Equation , 2014, SIAM J. Sci. Comput..
[45] V. Uchaikin. Fractional Derivatives for Physicists and Engineers , 2013 .
[46] Tingchun Wang,et al. Point-wise errors of two conservative difference schemes for the Klein–Gordon–Schrödinger equation , 2012 .
[47] Weihua Deng,et al. High order schemes for the tempered fractional diffusion equations , 2016, Adv. Comput. Math..
[48] K. Boubaker,et al. An attempt to give exact solitary and periodic wave polynomial solutions to the nonlinear Klein–Gordon–Schrödinger equations , 2015 .
[49] Chengjian Zhang,et al. A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations , 2016, Commun. Nonlinear Sci. Numer. Simul..
[50] Chengming Huang,et al. Galerkin finite element method for the nonlinear fractional Ginzburg–Landau equation , 2017 .
[51] Sunil Kumar,et al. An accurate numerical method for solving the linear fractional Klein–Gordon equation , 2014 .
[52] Dumitru Baleanu,et al. A Spectral Legendre–Gauss–Lobatto Collocation Method for a Space-Fractional Advection Diffusion Equations with Variable Coefficients , 2013 .
[53] Y. Yang. Jacobi spectral Galerkin methods for fractional integro-differential equations , 2015 .
[54] Wei Yang,et al. Maximum-norm error analysis of a difference scheme for the space fractional CNLS , 2015, Appl. Math. Comput..
[55] Li Yang,et al. Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations , 2007, J. Comput. Phys..
[56] Dumitru Baleanu,et al. On nonlinear fractional Klein-Gordon equation , 2011, Signal Process..
[57] Yuepeng Wang,et al. Generalized solitary wave solutions for the Klein-Gordon-Schrödinger equations , 2009, Comput. Math. Appl..