InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via Intermediary Latents

We introduce a simple and effective method for learning variational auto-encoders (VAEs) with controllable inductive biases by using an intermediary set of latent variables. This allows us to overcome the limitations of the standard Gaussian prior assumption. In particular, it allows us to impose desired properties like sparsity or clustering on learned representations, and incorporate prior information into the learned model. Our approach, which we refer to as the Intermediary Latent Space VAE (InteL-VAE), is based around controlling the stochasticity of the encoding process with the intermediary latent variables, before deterministically mapping them forward to our target latent representation, from which reconstruction is performed. This allows us to maintain all the advantages of the traditional VAE framework, while incorporating desired prior information, inductive biases, and even topological information through the latent mapping. We show that this, in turn, allows InteL-VAEs to learn both better generative models and representations. Accompanying code is provided at https://github.com/NingMiao/InteL-VAEs.

[1]  Max Welling,et al.  VAE with a VampPrior , 2017, AISTATS.

[2]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[3]  David Duvenaud,et al.  FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models , 2018, ICLR.

[4]  Yee Whye Teh,et al.  Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders , 2019, NeurIPS.

[5]  Stefano Ermon,et al.  InfoVAE: Balancing Learning and Inference in Variational Autoencoders , 2019, AAAI.

[6]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[7]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[8]  Ke Huang,et al.  Sparse Representation for Signal Classification , 2006, NIPS.

[9]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[10]  Alexander A. Alemi,et al.  Fixing a Broken ELBO , 2017, ICML.

[11]  Gerald J. Sussman,et al.  Sparse Representations for Fast, One-Shot Learning , 1997, AAAI/IAAI.

[12]  Iain Murray,et al.  Masked Autoregressive Flow for Density Estimation , 2017, NIPS.

[13]  Ryan P. Adams,et al.  Composing graphical models with neural networks for structured representations and fast inference , 2016, NIPS.

[14]  Andrew Y. Ng,et al.  The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization , 2011, ICML.

[15]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[16]  Yee Whye Teh,et al.  Filtering Variational Objectives , 2017, NIPS.

[17]  Abhishek Kumar,et al.  Variational Inference of Disentangled Latent Concepts from Unlabeled Observations , 2017, ICLR.

[18]  David Vázquez,et al.  PixelVAE: A Latent Variable Model for Natural Images , 2016, ICLR.

[19]  Hongliang Li,et al.  WaveLBP based hierarchical features for image classification , 2013, Pattern Recognit. Lett..

[20]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[21]  Yoshua Bengio,et al.  Classification using discriminative restricted Boltzmann machines , 2008, ICML '08.

[22]  Roderick Murray-Smith,et al.  Variational Sparse Coding , 2019, UAI.

[23]  Scott W. Linderman,et al.  Variational Sequential Monte Carlo , 2017, AISTATS.

[24]  Luca Saglietti,et al.  Gaussian Process Prior Variational Autoencoders , 2018, NeurIPS.

[25]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  David Pfau,et al.  Towards a Definition of Disentangled Representations , 2018, ArXiv.

[27]  Ivan Ovinnikov,et al.  Poincar\'e Wasserstein Autoencoder , 2019, 1901.01427.

[28]  Stefano Ermon,et al.  Learning Hierarchical Features from Generative Models , 2017, ArXiv.

[29]  Andriy Mnih,et al.  Resampled Priors for Variational Autoencoders , 2018, AISTATS.

[30]  Wynne Hsu,et al.  Discovering Interesting Holes in Data , 1997, IJCAI.

[31]  Upamanyu Madhow,et al.  Combating Adversarial Attacks Using Sparse Representations , 2018, ICLR.

[32]  Jing-yu Yang,et al.  Topology Description for Data Distributions Using a Topology Graph With Divide-and-Combine Learning Strategy , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[33]  Lei Li,et al.  Dispersed Exponential Family Mixture VAEs for Interpretable Text Generation , 2020, ICML.

[34]  LinLin Shen,et al.  Deep Feature Consistent Variational Autoencoder , 2016, 2017 IEEE Winter Conference on Applications of Computer Vision (WACV).

[35]  Oriol Vinyals,et al.  Neural Discrete Representation Learning , 2017, NIPS.

[36]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[37]  Eric Nalisnick,et al.  Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..

[38]  Jan Kautz,et al.  NVAE: A Deep Hierarchical Variational Autoencoder , 2020, NeurIPS.

[39]  Murray Shanahan,et al.  Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders , 2016, ArXiv.

[40]  Subutai Ahmad,et al.  How Can We Be So Dense? The Benefits of Using Highly Sparse Representations , 2019, ArXiv.

[41]  Adam S. Charles,et al.  Sparse-Coding Variational Auto-Encoders , 2018, bioRxiv.

[42]  Andriy Mnih,et al.  Disentangling by Factorising , 2018, ICML.

[43]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[44]  Ali Razavi,et al.  Generating Diverse High-Fidelity Images with VQ-VAE-2 , 2019, NeurIPS.

[45]  Nicola De Cao,et al.  Hyperspherical Variational Auto-Encoders , 2018, UAI 2018.

[46]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[47]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[48]  Kevin Scaman,et al.  Lipschitz regularity of deep neural networks: analysis and efficient estimation , 2018, NeurIPS.

[49]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[50]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[51]  Dustin Tran,et al.  Hierarchical Variational Models , 2015, ICML.

[52]  Ruslan Salakhutdinov,et al.  Importance Weighted Autoencoders , 2015, ICLR.

[53]  Ole Winther,et al.  Ladder Variational Autoencoders , 2016, NIPS.

[54]  Erhardt Barth,et al.  A Hybrid Convolutional Variational Autoencoder for Text Generation , 2017, EMNLP.

[55]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[56]  Honglak Lee,et al.  Learning Structured Output Representation using Deep Conditional Generative Models , 2015, NIPS.

[57]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[58]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[59]  Scott T. Rickard,et al.  Comparing Measures of Sparsity , 2008, IEEE Transactions on Information Theory.

[60]  Shoichiro Yamaguchi,et al.  A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning , 2019, ICML.

[61]  Tuan Anh Le,et al.  Auto-Encoding Sequential Monte Carlo , 2017, ICLR.

[62]  Anthony L. Caterini,et al.  Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows , 2019, ICML.

[63]  Harold Soh,et al.  Hyperprior Induced Unsupervised Disentanglement of Latent Representations , 2018, AAAI.

[64]  Vincent Lepetit,et al.  Are sparse representations really relevant for image classification? , 2011, CVPR 2011.

[65]  Octavian-Eugen Ganea,et al.  Mixed-curvature Variational Autoencoders , 2019, ICLR.

[66]  Yee Whye Teh,et al.  Disentangling Disentanglement in Variational Autoencoders , 2018, ICML.

[67]  Patrick van der Smagt,et al.  Learning Hierarchical Priors in VAEs , 2019, NeurIPS.

[68]  Nicola De Cao,et al.  Explorations in Homeomorphic Variational Auto-Encoding , 2018, ArXiv.