Regular ArticleTraveling Water Waves: Spectral Continuation Methods with Parallel Implementation

We present a numerical continuation method for traveling wave solutions to the full water wave problem using a spectral collocation discretization. The water wave problem is reformulated in terms of surface variables giving rise to the Zakharov–Craig–Sulem formulation, and traveling waves are studied by introducing a phase velocity vector as a parameter. We follow non-trivial solution branches bifurcating from the trivial solution branch via numerical continuation methods. Techniques such as projections and filtering allow the computation to proceed for greater distances up the branch, and parallelism allows the computation of larger problems. We conclude with results including the formation of hexagonal patterns for the three dimensional problem.

[1]  J. Byatt-Smith,et al.  An exact integral equation for steady surface waves , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  T. Levi-Civita,et al.  Détermination rigoureuse des ondes permanentes d'ampleur finie , 1925 .

[3]  D. J. Struik Détermination rigoureuse des ondes irrotationelles périodiques dans un canal à profondeur finie , 1926 .

[4]  Walter Craig,et al.  Numerical simulation of gravity waves , 1993 .

[5]  B. Kadomtsev,et al.  On the Stability of Solitary Waves in Weakly Dispersing Media , 1970 .

[6]  Norman W. Scheffner,et al.  Two-dimensional periodic waves in shallow water. Part 2. Asymmetric waves , 1995, Journal of Fluid Mechanics.

[7]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[8]  Dick K. P. Yue,et al.  A high-order spectral method for the study of nonlinear gravity waves , 1987, Journal of Fluid Mechanics.

[9]  James Witting,et al.  On the Highest and Other Solitary Waves , 1975 .

[10]  Joseph B. Keller,et al.  Three-dimensional water waves , 1996 .

[11]  Norman W. Scheffner,et al.  Two-dimensional periodic waves in shallow water , 1989, Journal of Fluid Mechanics.

[12]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[13]  J. A. Zufiria Weakly nonlinear non-symmetric gravity waves on water of finite depth , 1987, Journal of Fluid Mechanics.

[14]  H. Keller Lectures on Numerical Methods in Bifurcation Problems , 1988 .

[15]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[16]  Charles W. Lenau,et al.  The solitary wave of maximum amplitude , 1966, Journal of Fluid Mechanics.

[17]  Ronald R. Coifman,et al.  Nonlinear harmonic analysis and analytic dependence , 1985 .

[18]  J. M. Williams,et al.  Limiting gravity waves in water of finite depth , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[19]  Anthony Skjellum,et al.  Using MPI: Portable Programming with the Message-Passing Interface , 1999 .