Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex

In the rodent vibrissal system, active sensation and sensorimotor integration are mediated in part by connections between barrel cortex and vibrissal motor cortex. Little is known about how these structures interact at the level of neurons. We used Channelrhodopsin-2 (ChR2) expression, combined with anterograde and retrograde labeling, to map connections between barrel cortex and pyramidal neurons in mouse motor cortex. Barrel cortex axons preferentially targeted upper layer (L2/3, L5A) neurons in motor cortex; input to neurons projecting back to barrel cortex was particularly strong. Barrel cortex input to deeper layers (L5B, L6) of motor cortex, including neurons projecting to the brainstem, was weak, despite pronounced geometric overlap of dendrites with axons from barrel cortex. Neurons in different layers received barrel cortex input within stereotyped dendritic domains. The cortico-cortical neurons in superficial layers of motor cortex thus couple motor and sensory signals and might mediate sensorimotor integration and motor learning.

[1]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[2]  Nathan G. Clack,et al.  Vibrissa-Based Object Localization in Head-Fixed Mice , 2010, The Journal of Neuroscience.

[3]  K. Svoboda,et al.  Interdigitated Paralemniscal and Lemniscal Pathways in the Mouse Barrel Cortex , 2006, PLoS biology.

[4]  D. Pandya,et al.  Cortico‐cortical connections of somatic sensory cortex (areas 3, 1 and 2) in the rhesus monkey , 1978, The Journal of comparative neurology.

[5]  Kevin D Alloway,et al.  Bilateral projections from rat MI whisker cortex to the neostriatum, thalamus, and claustrum: Forebrain circuits for modulating whisking behavior , 2009, The Journal of comparative neurology.

[6]  Cori Bargmann,et al.  GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses in Living Nervous Systems , 2008, Neuron.

[7]  E. Fetz,et al.  Operantly conditioned patterns on precentral unit activity and correlated responses in adjacent cells and contralateral muscles. , 1973, Journal of neurophysiology.

[8]  B W Connors,et al.  Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I , 1998, The Journal of comparative neurology.

[9]  F. Haiss,et al.  Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice , 2007, Neuron.

[10]  R. Lin,et al.  Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. , 1993, Somatosensory & motor research.

[11]  A. Keller,et al.  Input-output organization of the rat vibrissal motor cortex , 2004, Experimental Brain Research.

[12]  Eilon Vaadia,et al.  Neural basis of sensorimotor learning: modifying internal models , 2008, Current Opinion in Neurobiology.

[13]  Karel Svoboda,et al.  The Functional Properties of Barrel Cortex Neurons Projecting to the Primary Motor Cortex , 2010, The Journal of Neuroscience.

[14]  D. Kleinfeld,et al.  Positive Feedback in a Brainstem Tactile Sensorimotor Loop , 2005, Neuron.

[15]  M. Brecht,et al.  Monosynaptic Pathway from Rat Vibrissa Motor Cortex to Facial Motor Neurons Revealed by Lentivirus-Based Axonal Tracing , 2005, The Journal of Neuroscience.

[16]  D. Kleinfeld,et al.  'Where' and 'what' in the whisker sensorimotor system , 2008, Nature Reviews Neuroscience.

[17]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[18]  C. Petersen The Functional Organization of the Barrel Cortex , 2007, Neuron.

[19]  D. Kleinfeld,et al.  Active Spatial Perception in the Vibrissa Scanning Sensorimotor System , 2007, PLoS biology.

[20]  G. Shepherd,et al.  Geometric and functional organization of cortical circuits , 2005, Nature Neuroscience.

[21]  S. Sherman,et al.  Synaptic circuits involving an individual retinogeniculate axon in the cat , 1987, The Journal of comparative neurology.

[22]  E. Callaway,et al.  Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons , 2000, Nature Neuroscience.

[23]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[24]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates, The coronal plates and diagrams Compact, 3rd Edition , 2008 .

[25]  J. Lübke,et al.  Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex , 2007, Brain Structure and Function.

[26]  Simon J. Mitchell,et al.  Direct measurement of somatic voltage clamp errors in central neurons , 2008, Nature Neuroscience.

[27]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[28]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[29]  D. Simons,et al.  Biometric analyses of vibrissal tactile discrimination in the rat , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  Taro Kiritani,et al.  Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex , 2010, Nature Neuroscience.

[31]  J. Wolff,et al.  Activation of the primary motor cortex by somatosensory stimulation in adult rats is mediated mainly by associational connections from the somatosensory cortex , 1999, Neuroscience.

[32]  Karel Svoboda,et al.  Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice , 2010, Nature.

[33]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[34]  Celine Mateo,et al.  Motor Control by Sensory Cortex , 2010, Science.

[35]  Hanno S Meyer,et al.  Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. , 2010, Cerebral cortex.

[36]  Joshua C. Brumberg,et al.  The sensorimotor slice , 2007, Journal of Neuroscience Methods.

[37]  Shubhodeep Chakrabarti,et al.  Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI , 2006, The Journal of comparative neurology.

[38]  Stephen J. Smith,et al.  Single-Synapse Analysis of a Diverse Synapse Population: Proteomic Imaging Methods and Markers , 2010, Neuron.

[39]  N. L. Chamberlin,et al.  Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS , 1998, Brain Research.

[40]  J. Gibson Observations on active touch. , 1962, Psychological review.

[41]  C. Petersen,et al.  Long‐range connectivity of mouse primary somatosensory barrel cortex , 2010, The European journal of neuroscience.

[42]  R. Kötter,et al.  Cell Type-Specific Circuits of Cortical Layer IV Spiny Neurons , 2003, The Journal of Neuroscience.

[43]  O. Sporns,et al.  Motifs in Brain Networks , 2004, PLoS biology.

[44]  N. Spruston,et al.  Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events. , 1993, Journal of neurophysiology.

[45]  Gordon M. Shepherd,et al.  Handbook of Brain Microcircuits , 2010 .

[46]  R. Nudo,et al.  Descending pathways to the spinal cord, III: Sites of origin of the corticospinal tract , 1990, The Journal of comparative neurology.

[47]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[48]  K. Svoboda,et al.  Reverse engineering the mouse brain , 2009, Nature.

[49]  Martin Deschênes,et al.  Single‐cell study of motor cortex projections to the barrel field in rats , 2003, The Journal of comparative neurology.

[50]  R. Izraeli,et al.  Vibrissal motor cortex in the rat: connections with the barrel field , 2004, Experimental Brain Research.

[51]  Jianing Yu,et al.  Top-down laminar organization of the excitatory network in motor cortex , 2008, Nature Neuroscience.

[52]  Michael Brecht,et al.  Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells , 2004, The Journal of comparative neurology.

[53]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[54]  D. Johnston,et al.  Active properties of neuronal dendrites. , 1996, Annual review of neuroscience.

[55]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[56]  R. S. Waters,et al.  Organization of the Mouse Motor Cortex Studied by Retrograde Tracing and Intracortical Microstimulation (ICMS) Mapping , 1991, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[57]  E. White,et al.  Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse , 1983, The Journal of comparative neurology.

[58]  G. Shepherd,et al.  Three-Dimensional Structure and Composition of CA3→CA1 Axons in Rat Hippocampal Slices: Implications for Presynaptic Connectivity and Compartmentalization , 1998, The Journal of Neuroscience.

[59]  S. Nelson,et al.  Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. , 2007, Journal of neurophysiology.

[60]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[61]  E. White,et al.  Quantification of thalamocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex , 1986, The Journal of comparative neurology.

[62]  J. Donoghue,et al.  Afferent connections of the lateral agranular field of the rat motor cortex , 1983, The Journal of comparative neurology.

[63]  E. White,et al.  Afferent and efferent projections of the region in mouse sml cortex which contains the posteromedial barrel subfield , 1977, The Journal of comparative neurology.

[64]  G. Shepherd,et al.  Laminar and Columnar Organization of Ascending Excitatory Projections to Layer 2/3 Pyramidal Neurons in Rat Barrel Cortex , 2005, The Journal of Neuroscience.

[65]  D. Kleinfeld,et al.  Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system , 2009, Nature Neuroscience.

[66]  R Kötter,et al.  Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. , 2006, Cerebral cortex.

[67]  A. Keller,et al.  Functional circuitry involved in the regulation of whisker movements , 2002, The Journal of comparative neurology.

[68]  Michael I. Jordan,et al.  An internal model for sensorimotor integration. , 1995, Science.

[69]  K. Svoboda,et al.  Cell Type-Specific Structural Plasticity of Axonal Branches and Boutons in the Adult Neocortex , 2006, Neuron.

[70]  Lawrence C. Sincich,et al.  Complete flatmounting of the macaque cerebral cortex , 2003, Visual Neuroscience.

[71]  D Kleinfeld,et al.  Anatomical loops and their electrical dynamics in relation to whisking by rat. , 1999, Somatosensory & motor research.

[72]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[73]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[74]  J. Hoover,et al.  Sensorimotor corticocortical projections from rat barrel cortex have an anisotropic organization that facilitates integration of inputs from whiskers in the same row , 2003, The Journal of comparative neurology.

[75]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[76]  H. S. Meyer,et al.  Cell Type–Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[77]  Kevin D Alloway,et al.  Functional circuits mediating sensorimotor integration: Quantitative comparisons of projections from rodent barrel cortex to primary motor cortex, neostriatum, superior colliculus, and the pons , 2005, The Journal of comparative neurology.

[78]  Bryan M. Hooks,et al.  Laminar Analysis of Excitatory Local Circuits in Vibrissal Motor and Sensory Cortical Areas , 2011, PLoS biology.

[79]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[80]  R. Douglas,et al.  Chance or design? Some specific considerations concerning synaptic boutons in cat visual cortex , 2002, Journal of neurocytology.

[81]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[82]  J. Kleim,et al.  The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture. , 2011, Cerebral cortex.

[83]  R. Masterton,et al.  The sensory contribution of a single vibrissa's cortical barrel. , 1986, Journal of neurophysiology.

[84]  Bert Sakmann,et al.  Sub‐ and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex , 2004, The Journal of physiology.

[85]  E. Bamberg,et al.  Channelrhodopsin-2 is a leaky proton pump , 2009, Proceedings of the National Academy of Sciences.

[86]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.

[87]  Edward L White,et al.  Specificity of cortical synaptic connectivity: Emphasis on perspectives gained from quantitative electron microscopy , 2002, Journal of neurocytology.

[88]  C. Gilbert,et al.  Axons and Synaptic Boutons Are Highly Dynamic in Adult Visual Cortex , 2006, Neuron.

[89]  Karel Svoboda,et al.  Circuit Analysis of Experience-Dependent Plasticity in the Developing Rat Barrel Cortex , 2003, Neuron.

[90]  M. Nicolelis,et al.  Behavioral Properties of the Trigeminal Somatosensory System in Rats Performing Whisker-Dependent Tactile Discriminations , 2001, The Journal of Neuroscience.

[91]  B. Sakmann,et al.  Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific , 2009, Proceedings of the National Academy of Sciences.

[92]  H. S. Meyer,et al.  Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[93]  Stephen J. Smith,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[94]  Rune W. Berg,et al.  Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking. , 2002, Journal of neurophysiology.

[95]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[96]  Nuno Maçarico da Costa,et al.  The proportion of synapses formed by the axons of the lateral geniculate nucleus in layer 4 of area 17 of the cat , 2009, The Journal of comparative neurology.

[97]  David Kleinfeld,et al.  Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat. , 2004, Journal of neurophysiology.

[98]  Ben Mitchinson,et al.  Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact , 2007, Proceedings of the Royal Society B: Biological Sciences.

[99]  Mara Fabri,et al.  Ipsilateral cortical connections of primary somatic sensory cortex in rats , 1991, The Journal of comparative neurology.

[100]  E. Welker,et al.  Organization of feedback and feedforward projections of the barrel cortex: a PHA-L study in the mouse , 2004, Experimental Brain Research.

[101]  Per Magne Knutsen,et al.  Haptic Object Localization in the Vibrissal System: Behavior and Performance , 2006, The Journal of Neuroscience.

[102]  D. Kleinfeld,et al.  Adaptive Filtering of Vibrissa Input in Motor Cortex of Rat , 2002, Neuron.

[103]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[104]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[105]  D Kleinfeld,et al.  Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. , 1997, Journal of neurophysiology.

[106]  T. Oertner,et al.  Optical induction of synaptic plasticity using a light-sensitive channel , 2007, Nature Methods.

[107]  E. Welker,et al.  Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP , 2004, Experimental Brain Research.

[108]  Edward M Callaway,et al.  Cell type specificity of local cortical connections , 2002, Journal of neurocytology.

[109]  M. Armstrong‐James,et al.  Spatiotemporal convergence and divergence in the rat S1 “Barrel” cortex , 1987, The Journal of comparative neurology.