A Preconditioned Fast Collocation Method for a Linear Nonlocal Diffusion Model in Convex Domains

Recently, there are many papers dedicated to develop fast numerical methods for nonlocal diffusion and peridynamic models. However, these methods require the physical domain where we solve the governing equations is rectangular. To relax this restriction, in this article, we develop a fast collocation method for a static linear nonlocal diffusion model in convex domains via a volume-penalization approach. Based on the analysis of the structure of the coefficient matrix, we also present a fast solution technique of the linear system arising from the collocation discretization by accelerating the matrix-vector multiplications in the usual Krylov subspace iteration method. This technique helps to reduce the computational work in each Krylov subspace iteration from <inline-formula> <tex-math notation="LaTeX">$O(N^{2})$ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$O(N\log N)$ </tex-math></inline-formula> and the storage requirement of the coefficient matrix from <inline-formula> <tex-math notation="LaTeX">$O(N^{2})$ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$O(N)$ </tex-math></inline-formula> without any lossy compression, where <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> is the number of unknowns. Moreover, an efficient preconditioner was also provided in this work to accelerate the convergence of the Krylov subspace iteration method. Numerical experiments show the applicability of this method.

[1]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[2]  Yuan Lou,et al.  Random dispersal vs. non-local dispersal , 2009 .

[3]  R. Lehoucq,et al.  Peridynamics for multiscale materials modeling , 2008 .

[4]  Hong Wang,et al.  A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model , 2012, J. Comput. Phys..

[5]  Jiang Yang,et al.  Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications , 2017, J. Comput. Phys..

[6]  Peter W. Bates,et al.  An Integrodifferential Model for Phase Transitions: Stationary Solutions in Higher Space Dimensions , 1999 .

[7]  Hai-Wei Sun,et al.  A preconditioned fast finite difference scheme for space-fractional diffusion equations in convex domains , 2019, Comput. Appl. Math..

[8]  David J. Steigmann,et al.  A two-dimensional peridynamic model for thin plates , 2015 .

[9]  E. Madenci,et al.  Peridynamic analysis of fiber-reinforced composite materials , 2012 .

[10]  Philippe Angot,et al.  A penalization method to take into account obstacles in incompressible viscous flows , 1999, Numerische Mathematik.

[11]  Zhengguang Liu,et al.  A Fast Finite Difference Method for a Continuous Static Linear Bond-Based Peridynamics Model of Mechanics , 2018, J. Sci. Comput..

[12]  Hong Wang,et al.  A Fast Discontinuous Galerkin Method for a Bond-Based Linear Peridynamic Model Discretized on a Locally Refined Composite Mesh , 2018, J. Sci. Comput..

[13]  Hong Wang,et al.  A fast finite volume method for conservative space-fractional diffusion equations in convex domains , 2016, J. Comput. Phys..

[14]  Kaushik Bhattacharya,et al.  Kinetics of phase transformations in the peridynamic formulation of continuum mechanics , 2006 .

[15]  Stewart Andrew Silling,et al.  Peridynamic Modeling of Impact Damage , 2004 .

[16]  Thabet Abdeljawad,et al.  New numerical scheme for solving integral equations via fixed point method using distinct (ω-F)-contractions , 2020 .

[17]  S. Silling,et al.  PERIDYNAMIC FRACTURE AND DAMAGE MODELING OF MEMBRANES AND NANOFIBER NETWORKS , 2004 .

[18]  Hong Wang,et al.  A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model , 2014 .

[19]  Hong Wang,et al.  A Fast Finite Element Method for Space-Fractional Dispersion Equations on Bounded Domains in ℝ2 , 2015, SIAM J. Sci. Comput..

[20]  Stewart Andrew Silling,et al.  Crack nucleation in a peridynamic solid , 2010 .

[21]  Florin Bobaru,et al.  The peridynamic formulation for transient heat conduction , 2010 .

[22]  Hong Wang,et al.  AN EFFICIENT COLLOCATION METHOD FOR A NON-LOCAL DIFFUSION MODEL , 2013 .

[23]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[24]  Erdal Karapinar,et al.  A New Approach to the Solution of the Fredholm Integral Equation via a Fixed Point on Extended b-Metric Spaces , 2018, Symmetry.

[25]  T. Abdeljawad,et al.  A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method , 2020 .

[26]  A. Wathen,et al.  Iterative Methods for Toeplitz Systems , 2005 .

[27]  Qiang Du,et al.  Integral approximations to classical diffusion and smoothed particle hydrodynamics , 2015 .

[28]  Erdal Karapinar,et al.  Solutions of the Nonlinear Integral Equation and Fractional Differential Equation Using the Technique of a Fixed Point with a Numerical Experiment in Extended b-Metric Space , 2019, Symmetry.

[29]  Abdon Atangana,et al.  A numerical schemes and comparisons for fixed point results with applications to the solutions of Volterra integral equations indislocatedextendedb-metricspace , 2020 .