SMOS sea surface salinity prototype processor: Algorithm validation

The Soil Moisture and Ocean Salinity (SMOS) mission (launch scheduled for 2008) aims at obtaining global maps of soil moisture and sea surface salinity (SSS). It uses an L-band (1.4 GHz) microwave interferometric radiometer to obtain brightness temperatures (Tb) at the Earth surface at horizontal and vertical polarizations. They will be used to retrieve both geophysical variables, following specifically designed algorithms that will be applied when the satellite field-of-view is covering land or ocean surfaces respectively. The retrieval of salinity is a complex process that requires the knowledge of environmental information and an accurate processing of the radiometer measurements, because of the narrow range of ocean Tb and the strong impact on the measures of geophysical parameters (such as sea state). Here we present the baseline approach chosen to retrieve sea surface salinity from SMOS data, as developed and implemented by the joint team of scientists and engineers responsible for the SMOS Salinity Level 2 Prototype Processor. We present academic tests conducted over homogeneous scenes with the prototype. In these configurations, external perturbation sources (sky radiation, sun glint, ...) are not taken into account. Roughness is the main sea surface signal disturbing SSS retrieval.

[1]  Y. Kerr,et al.  Selecting an optimal configuration for the Soil Moisture and Ocean Salinity mission , 2003 .

[2]  Adriano Camps,et al.  A new empirical model of sea surface microwave emissivity for salinity remote sensing , 2004 .

[3]  Bertrand Chapron,et al.  Earth-Viewing L-Band Radiometer Sensing of Sea Surface Scattered Celestial Sky Radiation—Part I: General Characteristics , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Philippe Waldteufel,et al.  About off-axis radiometric polarimetric measurements , 2002, IEEE Trans. Geosci. Remote. Sens..

[5]  Philippe Waldteufel,et al.  Ionospheric effects for L-band 2-D interferometric radiometry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[6]  A. Stoffelen Toward the true near-surface wind speed: Error modeling and calibration using triple collocation , 1998 .

[7]  Min Zhang,et al.  Theoretical study of the small slope approximation for ocean polarimetric thermal emission , 1999, IEEE Trans. Geosci. Remote. Sens..

[8]  M. Vall-llossera,et al.  Retrieving sea surface salinity with multiangular L‐band brightness temperatures: Improvement by spatiotemporal averaging , 2005 .

[9]  Bertrand Chapron,et al.  Modeling Sun Glitter at L-Band for Sea Surface Salinity Remote Sensing With SMOS , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Niels Skou,et al.  Final Report: Scientific Inputs for the SMOS Level 1 Processor Development - with Emphasis on Image Reconstruction , 2005 .

[11]  Michael H. Freilich,et al.  Validation of Vector Magnitude Datasets: Effects of Random Component Errors , 1997 .

[12]  Jacqueline Boutin,et al.  Surface Salinity Retrieved from SMOS Measurements over the Global Ocean: Imprecisions Due to Sea Surface Roughness and Temperature Uncertainties , 2004 .

[13]  I. Corbella,et al.  The SMOS end-to-end performance simulator: description and scientific applications , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[14]  J. Snyder An Equal-Area Map Projection For Polyhedral Globes , 1992 .

[15]  Jacqueline Boutin,et al.  Influence of sea surface emissivity model parameters at L-band for the estimation of salinity , 2002 .

[16]  C. Swift,et al.  An improved model for the dielectric constant of sea water at microwave frequencies , 1977, IEEE Journal of Oceanic Engineering.

[17]  Bertrand Chapron,et al.  Coupled sea surface-atmosphere model: 2. Spectrum of short wind waves , 1999 .

[18]  Bertrand Chapron,et al.  A model of sea-foam thickness distribution for passive microwave remote sensing applications , 2003 .

[19]  Bertrand Chapron,et al.  Earth-Viewing L-Band Radiometer Sensing of Sea Surface Scattered Celestial Sky Radiation—Part II: Application to SMOS , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .