Dynamic maps in phase-conjugated optical resonators

In this article the dynamical behavior of a beam within a ring-phase-conjugated resonator is modeled using two-dimensional iterative maps. In particular and as an example it is explicitly shown how the difference equations of the Duffing map can be used to describe the dynamic behavior of what we call Duffing beams i.e. beams that behave according to the Duffing map. The matrix of a Duffing map generating device is found in terms of the Duffing parameters, the state variables and the resonator parameters. To our knowledge this is the first time that the mathematical characteristics of an optical device in an optical cavity are stated so that a Duffing map is obtained as the dynamics for the ray beams.

[1]  M. Damzen,et al.  Temporal dynamics of a ring dye laser with a stimulated Brillouin scattering mirror. , 1996, Applied optics.

[2]  M. Damzen,et al.  FWM interaction transfer matrix for self-adaptive laser oscillators , 2000 .

[3]  M. Damzen,et al.  Long-pulse self-starting stimulated-Brillouin-scattering resonator. , 1994, Optics letters.

[4]  M. G. Galushkin,et al.  ARTICLES: Wavefront reversal of optical radiation using feedback in four-wave interaction , 1984 .

[5]  Y. Ichikawa,et al.  Global periodic structure of integrable Duffing’s maps , 2003 .

[6]  M. Damzen,et al.  Coaxial flash-lamp-pumped dye laser with a stimulated Brillouin scattering reflector , 1992 .

[7]  T. Nagamura,et al.  Large Electro‐optic Kerr Effect in Polymer‐Stabilized Liquid‐Crystalline Blue Phases , 2005 .

[8]  Ying-Cheng Lai,et al.  Towards complete detection of unstable periodic orbits in chaotic systems , 2001 .

[9]  D. A. Rockwell,et al.  A review of phase-conjugate solid-state lasers , 1988 .

[10]  Eschenazi,et al.  Basins of attraction in driven dynamical systems. , 1989, Physical review. A, General physics.

[11]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[12]  Isaak D. Mayergoyz,et al.  The science of hysteresis , 2005 .

[13]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[14]  A. Gerrard,et al.  Introduction to Matrix Methods in Optics , 1975 .

[15]  Mitschke,et al.  Stimulated Brillouin scattering in fibers with and without external feedback. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[16]  A Mocofanescu,et al.  Stimulated brillouin scattering : fundamentals and applications , 2003 .

[17]  R. Menzel,et al.  10-W single-rod Nd:YAG laser with stimulated Brillouin scattering Q-switching mirror. , 1992, Applied optics.

[18]  Guang S. He,et al.  Optical phase conjugation: principles, techniques, and applications , 2002 .

[19]  Patrick E. McSharry,et al.  Asymptotic angular stability in non-linear systems: rotation numbers and winding numbers , 2003 .