Deterministic Entanglement Transmission on Series-Parallel

The performance of entanglement transmission—the task of distributing entanglement between two distant nodes in a large-scale quantum network (QN) of partially entangled pure states—is gen-erally benchmarked against the classical entanglement percolation (CEP) scheme. Improvements beyond CEP were only achieved by nonscalable strategies and for restricted QN topologies. This paper explores and amplifies a new and more effective mapping of QN, referred to as concurrence percolation theory (ConPT), that suggests using deterministic rather than probabilistic protocols for scalably improving on CEP across arbitrary QN topology. More precisely, we implement ConPT via a novel deterministic entanglement transmission (DET) scheme that is fully analogous to resistor network analysis, with the corresponding series and parallel rules represented by deterministic entanglement swapping and concentration protocols, respectively. The DET is designed for general d -dimensional information carriers, scalable and adaptable for any series-parallel QN, and experimentally feasible as tested on IBM’s quantum computation platform. Unlike CEP, the DET mani-fests different levels of optimality for generalized k -concurrences—a fundamental family of bipartite entanglement measures. Our proof also implies that the well-known nested repeater protocol is not optimal for distilling entanglement from pure-state qubits, but the DET is.

[1]  S. Havlin,et al.  Concurrence Percolation in Quantum Networks. , 2021, Physical Review Letters.

[2]  Laura dos Santos Martins,et al.  Realization of a multinode quantum network of remote solid-state qubits , 2021, Science.

[3]  D. McKay,et al.  Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered ZZ Suppression. , 2020, Physical review letters.

[4]  Stefano Pirandola,et al.  End-to-end capacities of a quantum communication network , 2019, Communications Physics.

[5]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[6]  Peter C. Humphreys,et al.  Deterministic delivery of remote entanglement on a quantum network , 2017, Nature.

[7]  P. C. Humphreys,et al.  Entanglement distillation between solid-state quantum network nodes , 2017, Science.

[8]  Manlio De Domenico,et al.  Complex networks from classical to quantum , 2017, Communications Physics.

[9]  Donovan Buterakos,et al.  Deterministic generation of all-photonic quantum repeaters from solid-state emitters , 2016, 1612.03869.

[10]  Michael Siomau,et al.  Quantum entanglement percolation , 2016, 1602.06152.

[11]  D Cavalcanti,et al.  Distribution of entanglement in large-scale quantum networks , 2012, Reports on progress in physics. Physical Society.

[12]  G. J. Lapeyre,et al.  Multipartite entanglement percolation , 2009, 0910.2438.

[13]  Martí Cuquet,et al.  Entanglement percolation in quantum complex networks. , 2009, Physical review letters.

[14]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[15]  M. Hennrich,et al.  Bandwidth-tunable single-photon source in an ion-trap quantum network. , 2009, Physical review letters.

[16]  Philipp Schindler,et al.  Deterministic entanglement swapping with an ion-trap quantum computer , 2008 .

[17]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[18]  J. Cirac,et al.  Entanglement distribution in pure-state quantum networks , 2007, 0708.1025.

[19]  H. Briegel,et al.  Entanglement purification and quantum error correction , 2007, 0705.4165.

[20]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[21]  Guang-Can Guo,et al.  Protocol and quantum circuits for realizing deterministic entanglement concentration , 2006 .

[22]  G. Gour Family of concurrence monotones and its applications , 2004, quant-ph/0410148.

[23]  M. Koashi,et al.  Deterministic entanglement concentration , 2001, quant-ph/0107120.

[24]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[25]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[26]  Tarrach,et al.  Generalized schmidt decomposition and classification of three-quantum-Bit states , 2000, Physical review letters.

[27]  M. Plenio,et al.  Entanglement-Assisted Local Manipulation of Pure Quantum States , 1999, quant-ph/9905071.

[28]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[29]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[30]  P. Knight,et al.  PURIFICATION VIA ENTANGLEMENT SWAPPING AND CONSERVED ENTANGLEMENT , 1998, quant-ph/9812013.

[31]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[32]  Guifre Vidal,et al.  Entanglement monotones , 1998, quant-ph/9807077.

[33]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[34]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[35]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[36]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[37]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[38]  U. Weiss Quantum Dissipative Systems , 1993 .

[39]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[40]  R. Duffin Topology of series-parallel networks , 1965 .

[41]  V. Sidoravicius,et al.  Percolation Theory , 2005, Thinking Probabilistically.

[42]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .