Photon splatting using a view-sample cluster hierarchy

Splatting photons onto primary view samples, rather than gathering from a photon acceleration structure, can be a more efficient approach to evaluating the photon-density estimate in interactive applications, where the number of photons is often low compared to the number of view samples. Most photon splatting approaches struggle with large photon radii or high resolutions due to overdraw and insufficient culling. In this paper, we show how dynamic real-time diffuse interreflection can be achieved by using a full 3D acceleration structure built over the view samples and then splatting photons onto the view samples by traversing this data structure. Full dynamic lighting and scenes are possible by tracing and splatting photons, and rebuilding the acceleration structure every frame. We show that the number of view-sample/photon tests can be significantly reduced and suggest further culling techniques based on the normal cone of each node in the hierarchy. Finally, we present an approximate variant of our algorithm where photon traversal is stopped at a fixed level of our hierarchy, and the incoming radiance is accumulated per node and direction, rather than per view sample. This improves performance significantly with little visible degradation of quality.

[1]  David K. McAllister,et al.  OptiX: a general purpose ray tracing engine , 2010, ACM Trans. Graph..

[2]  Elmar Eisemann,et al.  Interactive Indirect Illumination Using Voxel Cone Tracing , 2011, Comput. Graph. Forum.

[3]  Derek Nowrouzezahrai,et al.  State of the art in photon density estimation , 2013, SA '13.

[4]  Philippe Bekaert,et al.  Advanced global illumination , 2006 .

[5]  Carsten Dachsbacher,et al.  Reflective shadow maps , 2005, I3D '05.

[6]  Morgan McGuire,et al.  2D Polyhedral Bounds of a Clipped, Perspective-Projected 3D Sphere , 2013 .

[7]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[8]  John D. Owens,et al.  Efficient Parallel Scan Algorithms for Manycore GPUs , 2010, Scientific Computing with Multicore and Accelerators.

[9]  Ulf Assarsson,et al.  Per-triangle shadow volumes using a view-sample cluster hierarchy , 2014, I3D '14.

[10]  Photon splatting using a view-sample cluster hierarchy , 2016 .

[11]  Jan Kautz,et al.  The State of the Art in Interactive Global Illumination , 2012, Comput. Graph. Forum.

[12]  Hans-Peter Seidel,et al.  Making Imperfect Shadow Maps View‐Adaptive: High‐Quality Global Illumination in Large Dynamic Scenes , 2011, Comput. Graph. Forum.

[13]  Jack Dongarra,et al.  Scientific Computing with Multicore and Accelerators , 2010, Chapman and Hall / CRC computational science series.

[14]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[15]  Mathias Paulin,et al.  Scalable photon splatting for global illumination , 2003, GRAPHITE '03.

[16]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[17]  Kun Zhou,et al.  Real-time KD-tree construction on graphics hardware , 2008, SIGGRAPH Asia '08.

[18]  Hans-Peter Seidel,et al.  Imperfect shadow maps for efficient computation of indirect illumination , 2008, SIGGRAPH Asia '08.

[19]  Morgan McGuire,et al.  Hardware-accelerated global illumination by image space photon mapping , 2009, High Performance Graphics.

[20]  Ingo Wald,et al.  Embree: a kernel framework for efficient CPU ray tracing , 2014, ACM Trans. Graph..

[21]  Wenzel Jakob,et al.  State of the art in photon density estimation , 2012, SIGGRAPH '12.

[23]  Derek Nowrouzezahrai,et al.  Fast Global Illumination Approximations on Deep G-Buffers , 2014 .

[24]  Kevin Skadron,et al.  Scalable parallel programming , 2008, 2008 IEEE Hot Chips 20 Symposium (HCS).

[25]  Ulf Assarsson,et al.  Clustered deferred and forward shading , 2012, EGGH-HPG'12.

[26]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[27]  John D. Owens,et al.  kANN on the GPU with shifted sorting , 2012, EGGH-HPG'12.

[28]  Anton Kaplanyan,et al.  Cascaded light propagation volumes for real-time indirect illumination , 2010, I3D '10.

[29]  Thomas W. Sederberg,et al.  Loop detection in surface patch intersections , 1988, Comput. Aided Geom. Des..

[30]  Chris Wyman,et al.  Multiresolution splatting for indirect illumination , 2009, I3D '09.

[31]  Morgan McGuire,et al.  Toward practical real-time photon mapping: efficient GPU density estimation , 2013, I3D '13.

[32]  Wolfgang Stuerzlinger,et al.  Interactive Rendering of Globally Illuminated Glossy Scenes , 1997, Rendering Techniques.