Models for fare planning in public transport

The optimization of fare systems in public transit allows to pursue objectives such as the maximization of demand, revenue, profit, or social welfare. We propose a nonlinear optimization approach to fare planning that is based on a detailed discrete choice model of user behavior. The approach allows to analyze different fare structures, optimization objectives, and operational scenarios involving, e.g., subsidies. We use the resulting models to compute optimized fare systems for the city of Potsdam, Germany.

[1]  Herbert Sonntag,et al.  Ein heuristisches Verfahren zum Entwurf nachfrageorientierter Linienführung im öffentlichen Personennahverkehr , 1979, Z. Oper. Research.

[2]  Avishai Ceder,et al.  Scheduling Considerations in Designing Transit Routes at the Network Level , 1992 .

[3]  D. F. Dubois,et al.  A Set of Methods in Transportation Network Synthesis and Analysis , 1979 .

[4]  Michael R. Bussieck,et al.  Discrete optimization in public rail transport , 1997, Math. Program..

[5]  S Noble,et al.  Management by objectives. , 1983, Topics in hospital pharmacy management.

[6]  Milenko Vrtic,et al.  Modelle der Verkehrsmittelwahl aus RP- und SP- Datengrundlagen , 2002 .

[7]  Mgh Bell,et al.  CAPACITY CONSTRAINED TRANSIT ASSIGNMENT MODELS AND RELIABILITY ANALYSIS. IN: ADVANCED MODELING FOR TRANSIT OPERATIONS AND SERVICE PLANNING , 2002 .

[8]  H. Baum FREE PUBLIC TRANSPORT , 1973 .

[9]  Nico M. van Dijk,et al.  Cost optimal allocation of rail passenger lines , 1998, Eur. J. Oper. Res..

[10]  P. Goodwin A REVIEW OF NEW DEMAND ELASTICITIES WITH SPECIAL REFERENCE TO SHORT AND LONG RUN EFFECTS OF PRICE CHANGES , 1992 .

[11]  B. McCarl,et al.  Economics , 1870, The Indian medical gazette.

[12]  J. F. Curtin EFFECT OF FARES ON TRANSIT RIDING , 1968 .

[13]  Tom Van Woensel,et al.  A stochastic approach to traffic congestion costs , 2009, Comput. Oper. Res..

[14]  B. Borger OPTIMAL PRICING OF URBAN PASSENGER TRANSPORT: A SIMULATION EXERCISE FOR BELGIUM. , 1996 .

[15]  Marc E. Pfetsch,et al.  Optimal Fares for Public Transport , 2005, OR.

[16]  T. Oum,et al.  CONCEPTS OF PRICE ELASTICITIES OF TRANSPORT DEMAND AND RECENT EMPIRICAL ESTIMATES: AN INTERPRETATIVE SURVEY. IN: URBAN TRANSPORT , 1992 .

[17]  Marika Neumann Fare Planning for Public Transport , 2006, OR.

[18]  P. Marcotte,et al.  A bilevel model of taxation and its application to optimal highway pricing , 1996 .

[19]  Karl Storchmann,et al.  EXTERNALITIES BY AUTOMOBILES AND FARE-FREE TRANSIT IN GERMANY - A PARADIGM SHIFT? , 2003 .

[20]  P. Kreuzer,et al.  Optimal lines for railway systems , 1997 .

[21]  Sönke Albers Absatzplanung von ÖPNV-Ticketarten bei differenzierter Preispolitik , 1995 .

[22]  Panos M. Pardalos,et al.  A biased random-key genetic algorithm for road congestion minimization , 2010, Optim. Lett..

[23]  Horst W. Hamacher,et al.  Design of Zone Tariff Systems in Public Transportation , 2004, Oper. Res..

[24]  D. McFadden Disaggregate Behavioral Travel Demand's RUM Side A 30-Year Retrospective , 2000 .

[25]  Qiang Qiang,et al.  A Relative Total Cost Index for the Evaluation of Transportation Network Robustness in the Presence of Degradable Links and Alternative Travel Behavior , 2008 .

[26]  Avishai Ceder,et al.  Transit Route Design Using Scheduling and Multiobjective Programming Techniques , 1995 .

[27]  J J Collings,et al.  MAXIMISATION OF PASSENGER MILES IN THEORY AND PRACTICE , 1994 .

[28]  U. Pape,et al.  Line Network Planning , 1995 .

[29]  Martin Grötschel,et al.  A Column-Generation Approach to Line Planning in Public Transport , 2007, Transp. Sci..

[30]  Michael R. Bussieck,et al.  A fast algorithm for near cost optimal line plans , 2004, Math. Methods Oper. Res..

[31]  P. A. Pedersen On the optimal fare policies in urban transportation , 2003 .

[32]  Leo Kroon,et al.  On solving multi-type line planning problems , 2002 .

[33]  K. V. Dender Pricing transport networks with fixed residential location , 2004 .

[34]  Cynthia Barnhart,et al.  Transportation Service Network Design: Models and Algorithms , 1999 .

[35]  José R. Correa,et al.  Sloan School of Management Working Paper 4319-03 June 2003 Selfish Routing in Capacitated Networks , 2022 .

[36]  C. Nash,et al.  MANAGEMENT OBJECTIVES, FARES AND SERVICE LEVELS IN BUS TRANSPORT , 1978 .

[37]  A. Bouma,et al.  Linienplanung und Simulation für öffentliche Verkehrswege in Praxis und Theorie , 1994 .

[38]  Mark D. Uncles,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1987 .

[39]  Erik T. Verhoef,et al.  Second-best congestion pricing in general static transportation networks with elastic demands , 2002 .

[40]  Chris Hendrickson,et al.  Design of Local Bus Service with Demand Equilibration , 1982 .

[41]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[42]  Michael R. Bussieck,et al.  Optimal Lines in Public Rail Transport , 1998 .

[43]  Nigel H. M. Wilson,et al.  Bus network design , 1986 .

[44]  William H. K. Lam,et al.  Models for Optimizing Transit Fares , 2002 .

[45]  Jacques Desrosiers,et al.  Time Constrained Routing and Scheduling , 1992 .

[46]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[47]  Christoph E. Mandl,et al.  Evaluation and optimization of urban public transportation networks , 1980 .

[48]  L. A. Silman,et al.  Planning the route system for urban buses , 1974, Comput. Oper. Res..

[49]  Leo G. Kroon,et al.  A Branch-and-Cut Approach for Solving Railway Line-Planning Problems , 2004, Transp. Sci..

[50]  Noga Alon,et al.  Color-coding , 1995, JACM.