Perturbation bound of singular linear systems

A classical perturbation bound in numerical linear algebra is extended to more general cases of singular linear algebraic systems and weighted linear least squares problem. Componentwise perturbation analysis of linear least squares problem is also derived.

[1]  Yong-Lin Chen Iterative methods for computing the generalized inverses A (2) T, S of a matrix A , 1996 .

[2]  C. Loan Generalizing the Singular Value Decomposition , 1976 .

[3]  G. Stewart On the Continuity of the Generalized Inverse , 1969 .

[4]  Yimin Wei,et al.  Inverse Order Rule for Weighted Generalized Inverse , 1998 .

[5]  Å. Björck Least squares methods , 1990 .

[6]  Robert D. Skeel,et al.  Scaling for Numerical Stability in Gaussian Elimination , 1979, JACM.

[7]  Yimin Wei Recurrent neural networks for computing weighted Moore-Penrose inverse , 2000, Appl. Math. Comput..

[8]  I. Duff,et al.  On the augmented system approach to sparse least-squares problems , 1989 .

[9]  Musheng Wei The perturbation of consistent least squares problems , 1989 .

[10]  Jiu Ding,et al.  New Perturbation Results for Equality-Constrained Least Squares Problems , 1998 .

[11]  N. Higham A Survey of Componentwise Perturbation Theory in Numerical Linear Algebra , 1994 .

[12]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[13]  J. Demmel,et al.  Improved Error Bounds for Underdetermined System Solvers , 1993, SIAM J. Matrix Anal. Appl..

[14]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[15]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[16]  Å. Björck Component-wise perturbation analysis and error bounds for linear least squares solutions , 1991 .